-
1
-
-
79956328903
-
Molecular mechanisms and clinical applications of angiogenesis.
-
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473:298-307.
-
(2011)
Nature
, vol.473
, pp. 298-307
-
-
Carmeliet, P.1
Jain, R.K.2
-
2
-
-
16344389190
-
Angiogenesis: where do we stand now?
-
Simons M. Angiogenesis: where do we stand now? Circulation 2005, 111:1556-1566.
-
(2005)
Circulation
, vol.111
, pp. 1556-1566
-
-
Simons, M.1
-
3
-
-
81255188940
-
Tumor angiogenesis: molecular pathways and therapeutic targets.
-
Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 2011, 17:1359-1370.
-
(2011)
Nat Med
, vol.17
, pp. 1359-1370
-
-
Weis, S.M.1
Cheresh, D.A.2
-
4
-
-
84858689017
-
Lymphocytes and the adventitial immune response in atherosclerosis.
-
Campbell KA, Lipinski MJ, Doran AC, Skaflen MD, Fuster V, McNamara CA. Lymphocytes and the adventitial immune response in atherosclerosis. Circ Res 2012, 110:889-900.
-
(2012)
Circ Res
, vol.110
, pp. 889-900
-
-
Campbell, K.A.1
Lipinski, M.J.2
Doran, A.C.3
Skaflen, M.D.4
Fuster, V.5
McNamara, C.A.6
-
5
-
-
79551490166
-
Inflammation, immunity, and hypertension.
-
Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A, Weyand CM. Inflammation, immunity, and hypertension. Hypertension 2011, 57:132-140.
-
(2011)
Hypertension
, vol.57
, pp. 132-140
-
-
Harrison, D.G.1
Guzik, T.J.2
Lob, H.E.3
Madhur, M.S.4
Marvar, P.J.5
Thabet, S.R.6
Vinh, A.7
Weyand, C.M.8
-
6
-
-
79954421374
-
The central nervous system and inflammation in hypertension.
-
Marvar PJ, Lob H, Vinh A, Zarreen F, Harrison DG. The central nervous system and inflammation in hypertension. Curr Opin Pharmacol 2011, 11:156-161.
-
(2011)
Curr Opin Pharmacol
, vol.11
, pp. 156-161
-
-
Marvar, P.J.1
Lob, H.2
Vinh, A.3
Zarreen, F.4
Harrison, D.G.5
-
7
-
-
84859854623
-
Vascular endothelial-cadherin and vascular stability.
-
Dejana E, Giampietro C. Vascular endothelial-cadherin and vascular stability. Curr Opin Hematol 2012, 19:218-223.
-
(2012)
Curr Opin Hematol
, vol.19
, pp. 218-223
-
-
Dejana, E.1
Giampietro, C.2
-
8
-
-
25144510997
-
A mechanosensory complex that mediates the endothelial cell response to fluid shear stress.
-
Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 2005, 437:426-431.
-
(2005)
Nature
, vol.437
, pp. 426-431
-
-
Tzima, E.1
Irani-Tehrani, M.2
Kiosses, W.B.3
Dejana, E.4
Schultz, D.A.5
Engelhardt, B.6
Cao, G.7
DeLisser, H.8
Schwartz, M.A.9
-
9
-
-
66749120196
-
VE-cadherin-mediated cell-cell interaction suppresses sprouting via signaling to MLC2 phosphorylation.
-
Abraham S, Yeo M, Montero-Balaguer M, Paterson H, Dejana E, Marshall CJ, Mavria G. VE-cadherin-mediated cell-cell interaction suppresses sprouting via signaling to MLC2 phosphorylation. Curr Biol 2009, 19:668-674.
-
(2009)
Curr Biol
, vol.19
, pp. 668-674
-
-
Abraham, S.1
Yeo, M.2
Montero-Balaguer, M.3
Paterson, H.4
Dejana, E.5
Marshall, C.J.6
Mavria, G.7
-
10
-
-
78649467527
-
Pericytes regulate the blood-brain barrier.
-
Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, et al. Pericytes regulate the blood-brain barrier. Nature 2010, 468:557-561.
-
(2010)
Nature
, vol.468
, pp. 557-561
-
-
Armulik, A.1
Genove, G.2
Mae, M.3
Nisancioglu, M.H.4
Wallgard, E.5
Niaudet, C.6
He, L.7
Norlin, J.8
Lindblom, P.9
Strittmatter, K.10
-
11
-
-
78649487239
-
Pericytes are required for blood-brain barrier integrity during embryogenesis.
-
Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 2010, 468:562-566.
-
(2010)
Nature
, vol.468
, pp. 562-566
-
-
Daneman, R.1
Zhou, L.2
Kebede, A.A.3
Barres, B.A.4
-
12
-
-
41949092558
-
Fibroblast growth factor regulation of neovascularization.
-
Murakami M, Simons M. Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol 2008, 15:215-220.
-
(2008)
Curr Opin Hematol
, vol.15
, pp. 215-220
-
-
Murakami, M.1
Simons, M.2
-
13
-
-
12344288420
-
Growth factor-induced therapeutic angiogenesis in the heart: protein therapy.
-
Annex BH, Simons M. Growth factor-induced therapeutic angiogenesis in the heart: protein therapy. Cardiovasc Res 2005, 65:649-655.
-
(2005)
Cardiovasc Res
, vol.65
, pp. 649-655
-
-
Annex, B.H.1
Simons, M.2
-
14
-
-
0035745524
-
Arteriogenesis, a new concept of vascular adaptation in occlusive disease.
-
Scholz D, Cai WJ, Schaper W. Arteriogenesis, a new concept of vascular adaptation in occlusive disease. Angiogenesis 2001, 4:247-257.
-
(2001)
Angiogenesis
, vol.4
, pp. 247-257
-
-
Scholz, D.1
Cai, W.J.2
Schaper, W.3
-
15
-
-
77951698149
-
Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling.
-
Rey S, Semenza GL. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 2010, 86:236-242.
-
(2010)
Cardiovasc Res
, vol.86
, pp. 236-242
-
-
Rey, S.1
Semenza, G.L.2
-
16
-
-
0030670074
-
Macrophage-dependent regulation of syndecan gene expression.
-
Li J, Brown LF, Laham RJ, Volk R, Simons M. Macrophage-dependent regulation of syndecan gene expression. Circ Res 1997, 81:785-796.
-
(1997)
Circ Res
, vol.81
, pp. 785-796
-
-
Li, J.1
Brown, L.F.2
Laham, R.J.3
Volk, R.4
Simons, M.5
-
18
-
-
0242405617
-
Endothelial-pericyte interactions in angiogenesis.
-
Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003, 314: 15-23.
-
(2003)
Cell Tissue Res
, vol.314
, pp. 15-23
-
-
Gerhardt, H.1
Betsholtz, C.2
-
19
-
-
0027509160
-
Junctions between pericytes and the endothelium in rat myocardial capillaries: a morphometric and immunogold study.
-
Schulze C, Firth JA. Junctions between pericytes and the endothelium in rat myocardial capillaries: a morphometric and immunogold study. Cell Tissue Res 1993, 271:145-154.
-
(1993)
Cell Tissue Res
, vol.271
, pp. 145-154
-
-
Schulze, C.1
Firth, J.A.2
-
20
-
-
0025758323
-
Microvascular pericytes: a review of their morphological and functional characteristics.
-
Diaz-Flores L, Gutierrez R, Varela H, Rancel N, Valladares F. Microvascular pericytes: a review of their morphological and functional characteristics. Histol Histopathol 1991, 6:269-286.
-
(1991)
Histol Histopathol
, vol.6
, pp. 269-286
-
-
Diaz-Flores, L.1
Gutierrez, R.2
Varela, H.3
Rancel, N.4
Valladares, F.5
-
22
-
-
0033039166
-
N-cadherin expression in endothelial cells during early angiogenesis in the eye and brain of the chicken: relation to blood-retina and blood-brain barrier development.
-
Gerhardt H, Liebner S, Redies C, Wolburg H. N-cadherin expression in endothelial cells during early angiogenesis in the eye and brain of the chicken: relation to blood-retina and blood-brain barrier development. Eur J Neurosci 1999, 11:1191-1201.
-
(1999)
Eur J Neurosci
, vol.11
, pp. 1191-1201
-
-
Gerhardt, H.1
Liebner, S.2
Redies, C.3
Wolburg, H.4
-
23
-
-
26844543008
-
N-cadherin deficiency impairs pericyte recruitment, and not endothelial differentiation or sprouting, in embryonic stem cell-derived angiogenesis.
-
Tillet E, Vittet D, Feraud O, Moore R, Kemler R, Huber P. N-cadherin deficiency impairs pericyte recruitment, and not endothelial differentiation or sprouting, in embryonic stem cell-derived angiogenesis. Exp Cell Res 2005, 310:392-400.
-
(2005)
Exp Cell Res
, vol.310
, pp. 392-400
-
-
Tillet, E.1
Vittet, D.2
Feraud, O.3
Moore, R.4
Kemler, R.5
Huber, P.6
-
24
-
-
61649100307
-
The FGF family: biology, pathophysiology and therapy.
-
Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009, 8:235-253.
-
(2009)
Nat Rev Drug Discov
, vol.8
, pp. 235-253
-
-
Beenken, A.1
Mohammadi, M.2
-
25
-
-
1842816370
-
Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction.
-
Wright TJ, Ladher R, McWhirter J, Murre C, Schoenwolf GC, Mansour SL. Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction. Dev Biol 2004, 269:264-275.
-
(2004)
Dev Biol
, vol.269
, pp. 264-275
-
-
Wright, T.J.1
Ladher, R.2
McWhirter, J.3
Murre, C.4
Schoenwolf, G.C.5
Mansour, S.L.6
-
26
-
-
42349102942
-
Non-canonical fibroblast growth factor signalling in angiogenesis.
-
Murakami M, Elfenbein A, Simons M. Non-canonical fibroblast growth factor signalling in angiogenesis. Cardiovasc Res 2008, 78:223-231.
-
(2008)
Cardiovasc Res
, vol.78
, pp. 223-231
-
-
Murakami, M.1
Elfenbein, A.2
Simons, M.3
-
27
-
-
59649090352
-
Extracellular interactome of the FGF receptor-ligand system: complexities and the relative simplicity of the worm.
-
Polanska UM, Fernig DG, Kinnunen T. Extracellular interactome of the FGF receptor-ligand system: complexities and the relative simplicity of the worm. Dev Dyn 2009, 238:277-293.
-
(2009)
Dev Dyn
, vol.238
, pp. 277-293
-
-
Polanska, U.M.1
Fernig, D.G.2
Kinnunen, T.3
-
28
-
-
0033783352
-
Fibroblast growth factors, their receptors and signaling.
-
Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 2000, 7:165-197.
-
(2000)
Endocr Relat Cancer
, vol.7
, pp. 165-197
-
-
Powers, C.J.1
McLeskey, S.W.2
Wellstein, A.3
-
29
-
-
0025976838
-
Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor.
-
Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991, 64:841-848.
-
(1991)
Cell
, vol.64
, pp. 841-848
-
-
Yayon, A.1
Klagsbrun, M.2
Esko, J.D.3
Leder, P.4
Ornitz, D.M.5
-
30
-
-
0034644539
-
Cell signaling by receptor tyrosine kinases.
-
Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000, 103:211-225.
-
(2000)
Cell
, vol.103
, pp. 211-225
-
-
Schlessinger, J.1
-
31
-
-
0030027488
-
Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction.
-
Mohammadi M, Dikic I, Sorokin A, Burgess WH, Jaye M, Schlessinger J. Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol Cell Biol 1996, 16:977-989.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 977-989
-
-
Mohammadi, M.1
Dikic, I.2
Sorokin, A.3
Burgess, W.H.4
Jaye, M.5
Schlessinger, J.6
-
32
-
-
0030706168
-
A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway.
-
Kouhara H, Hadari YR, Spivak-Kroizman T, Schilling J, Bar-Sagi D, Lax I, Schlessinger J. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 1997, 89:693-702.
-
(1997)
Cell
, vol.89
, pp. 693-702
-
-
Kouhara, H.1
Hadari, Y.R.2
Spivak-Kroizman, T.3
Schilling, J.4
Bar-Sagi, D.5
Lax, I.6
Schlessinger, J.7
-
33
-
-
0031835659
-
Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation.
-
Hadari YR, Kouhara H, Lax I, Schlessinger J. Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation. Mol Cell Biol 1998, 18:3966-3973.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 3966-3973
-
-
Hadari, Y.R.1
Kouhara, H.2
Lax, I.3
Schlessinger, J.4
-
34
-
-
0035933094
-
Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins.
-
Ong SH, Hadari YR, Gotoh N, Guy GR, Schlessinger J, Lax I. Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc Natl Acad Sci U S A 2001, 98:6074-6079.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 6074-6079
-
-
Ong, S.H.1
Hadari, Y.R.2
Gotoh, N.3
Guy, G.R.4
Schlessinger, J.5
Lax, I.6
-
35
-
-
0028881018
-
Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G.
-
Gotoh T, Hattori S, Nakamura S, Kitayama H, Noda M, Takai Y, Kaibuchi K, Matsui H, Hatase O, Takahashi H, et al. Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol Cell Biol 1995, 15: 6746-6753.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 6746-6753
-
-
Gotoh, T.1
Hattori, S.2
Nakamura, S.3
Kitayama, H.4
Noda, M.5
Takai, Y.6
Kaibuchi, K.7
Matsui, H.8
Hatase, O.9
Takahashi, H.10
-
37
-
-
18144415072
-
Mechanisms underlying differential responses to FGF signaling.
-
Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 2005, 16: 233-247.
-
(2005)
Cytokine Growth Factor Rev
, vol.16
, pp. 233-247
-
-
Dailey, L.1
Ambrosetti, D.2
Mansukhani, A.3
Basilico, C.4
-
38
-
-
79960064432
-
Raf family kinases: old dogs have learned new tricks.
-
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011, 2:232-260.
-
(2011)
Genes Cancer
, vol.2
, pp. 232-260
-
-
Matallanas, D.1
Birtwistle, M.2
Romano, D.3
Zebisch, A.4
Rauch, J.5
von Kriegsheim, A.6
Kolch, W.7
-
39
-
-
2942744501
-
The docking protein Gab1 is an essential component of an indirect mechanism for fibroblast growth factor stimulation of the phosphatidylinositol 3-kinase/Akt antiapoptotic pathway.
-
Lamothe B, Yamada M, Schaeper U, Birchmeier W, Lax I, Schlessinger J. The docking protein Gab1 is an essential component of an indirect mechanism for fibroblast growth factor stimulation of the phosphatidylinositol 3-kinase/Akt antiapoptotic pathway. Mol Cell Biol 2004, 24:5657-5666.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 5657-5666
-
-
Lamothe, B.1
Yamada, M.2
Schaeper, U.3
Birchmeier, W.4
Lax, I.5
Schlessinger, J.6
-
40
-
-
2642513899
-
Fibroblast growth factor 2: from laboratory evidence to clinical application.
-
Chen CH, Poucher SM, Lu J, Henry PD. Fibroblast growth factor 2: from laboratory evidence to clinical application. Curr Vasc Pharmacol 2004, 2:33-43.
-
(2004)
Curr Vasc Pharmacol
, vol.2
, pp. 33-43
-
-
Chen, C.H.1
Poucher, S.M.2
Lu, J.3
Henry, P.D.4
-
41
-
-
59649128333
-
Biological functions of the low and high molecular weight protein isoforms of fibroblast growth factor-2 in cardiovascular development and disease.
-
Liao S, Bodmer J, Pietras D, Azhar M, Doetschman T, Schultz Jel J. Biological functions of the low and high molecular weight protein isoforms of fibroblast growth factor-2 in cardiovascular development and disease. Dev Dyn 2009, 238:249-264.
-
(2009)
Dev Dyn
, vol.238
, pp. 249-264
-
-
Liao, S.1
Bodmer, J.2
Pietras, D.3
Azhar, M.4
Doetschman, T.5
Schultz Jel, J.6
-
42
-
-
0025941527
-
A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1.
-
Mohammadi M, Honegger AM, Rotin D, Fischer R, Bellot F, Li W, Dionne CA, Jaye M, Rubinstein M, Schlessinger J. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol Cell Biol 1991, 11: 5068-5078.
-
(1991)
Mol Cell Biol
, vol.11
, pp. 5068-5078
-
-
Mohammadi, M.1
Honegger, A.M.2
Rotin, D.3
Fischer, R.4
Bellot, F.5
Li, W.6
Dionne, C.A.7
Jaye, M.8
Rubinstein, M.9
Schlessinger, J.10
-
44
-
-
77956565517
-
Extended-synaptotagmin-2 mediates FGF receptor endocytosis and ERK activation in vivo.
-
Jean S, Mikryukov A, Tremblay MG, Baril J, Guillou F, Bellenfant S, Moss T. Extended-synaptotagmin-2 mediates FGF receptor endocytosis and ERK activation in vivo. Dev Cell 2010, 19:426-439.
-
(2010)
Dev Cell
, vol.19
, pp. 426-439
-
-
Jean, S.1
Mikryukov, A.2
Tremblay, M.G.3
Baril, J.4
Guillou, F.5
Bellenfant, S.6
Moss, T.7
-
45
-
-
0030221511
-
CAM-FGF receptor interactions: a model for axonal growth.
-
Doherty P, Walsh FS. CAM-FGF receptor interactions: a model for axonal growth. Mol Cell Neurosci 1996, 8:99-111.
-
(1996)
Mol Cell Neurosci
, vol.8
, pp. 99-111
-
-
Doherty, P.1
Walsh, F.S.2
-
46
-
-
0036781973
-
A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor.
-
Suyama K, Shapiro I, Guttman M, Hazan RB. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2002, 2: 301-314.
-
(2002)
Cancer Cell
, vol.2
, pp. 301-314
-
-
Suyama, K.1
Shapiro, I.2
Guttman, M.3
Hazan, R.B.4
-
47
-
-
84860813043
-
Syndecan 4 regulates FGFR1 signaling in endothelial cells by directing macropinocytosis.
-
Elfenbein A, Lanahan A, Zhou TX, Yamasaki A, Tkachenko E, Matsuda M, Simons M. Syndecan 4 regulates FGFR1 signaling in endothelial cells by directing macropinocytosis. Sci Signal 2012, 5:ra36.
-
(2012)
Sci Signal
, vol.5
-
-
Elfenbein, A.1
Lanahan, A.2
Zhou, T.X.3
Yamasaki, A.4
Tkachenko, E.5
Matsuda, M.6
Simons, M.7
-
48
-
-
24944461617
-
Expression pattern of fibroblast growth factors (FGFs), their receptors and antagonists in primary endothelial cells and vascular smooth muscle cells.
-
Antoine M, Wirz W, Tag CG, Mavituna M, Emans N, Korff T, Stoldt V, Gressner AM, Kiefer P. Expression pattern of fibroblast growth factors (FGFs), their receptors and antagonists in primary endothelial cells and vascular smooth muscle cells. Growth Factors 2005, 23:87-95.
-
(2005)
Growth Factors
, vol.23
, pp. 87-95
-
-
Antoine, M.1
Wirz, W.2
Tag, C.G.3
Mavituna, M.4
Emans, N.5
Korff, T.6
Stoldt, V.7
Gressner, A.M.8
Kiefer, P.9
-
49
-
-
79251501315
-
Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease.
-
Itoh N, Ornitz DM. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem 2011, 149:121-130.
-
(2011)
J Biochem
, vol.149
, pp. 121-130
-
-
Itoh, N.1
Ornitz, D.M.2
-
50
-
-
0033995557
-
Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice.
-
Miller DL, Ortega S, Bashayan O, Basch R, Basilico C. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol 2000, 20:2260-2268.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 2260-2268
-
-
Miller, D.L.1
Ortega, S.2
Bashayan, O.3
Basch, R.4
Basilico, C.5
-
51
-
-
0031930918
-
Fibroblast growth factor 2 control of vascular tone.
-
Zhou M, Sutliff RL, Paul RJ, Lorenz JN, Hoying JB, Haudenschild CC, Yin M, Coffin JD, Kong L, Kranias EG, et al. Fibroblast growth factor 2 control of vascular tone. Nat Med 1998, 4:201-207.
-
(1998)
Nat Med
, vol.4
, pp. 201-207
-
-
Zhou, M.1
Sutliff, R.L.2
Paul, R.J.3
Lorenz, J.N.4
Hoying, J.B.5
Haudenschild, C.C.6
Yin, M.7
Coffin, J.D.8
Kong, L.9
Kranias, E.G.10
-
52
-
-
0032479976
-
Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice.
-
Dono R, Texido G, Dussel R, Ehmke H, Zeller R. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J 1998, 17:4213-4225.
-
(1998)
EMBO J
, vol.17
, pp. 4213-4225
-
-
Dono, R.1
Texido, G.2
Dussel, R.3
Ehmke, H.4
Zeller, R.5
-
53
-
-
0346157995
-
Cardiac-specific overexpression of fibroblast growth factor-2 protects against myocardial dysfunction and infarction in a murine model of low-flow ischemia.
-
House SL, Bolte C, Zhou M, Doetschman T, Klevitsky R, Newman G, Schultz Jel J. Cardiac-specific overexpression of fibroblast growth factor-2 protects against myocardial dysfunction and infarction in a murine model of low-flow ischemia. Circulation 2003, 108: 3140-3148.
-
(2003)
Circulation
, vol.108
, pp. 3140-3148
-
-
House, S.L.1
Bolte, C.2
Zhou, M.3
Doetschman, T.4
Klevitsky, R.5
Newman, G.6
Schultz Jel, J.7
-
54
-
-
36348982148
-
Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function.
-
Virag JA, Rolle ML, Reece J, Hardouin S, Feigl EO, Murry CE. Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. Am J Pathol 2007, 171:1431-1440.
-
(2007)
Am J Pathol
, vol.171
, pp. 1431-1440
-
-
Virag, J.A.1
Rolle, M.L.2
Reece, J.3
Hardouin, S.4
Feigl, E.O.5
Murry, C.E.6
-
55
-
-
0028910939
-
Requirement of FGF-4 for postimplantation mouse development.
-
Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M. Requirement of FGF-4 for postimplantation mouse development. Science 1995, 267:246-249.
-
(1995)
Science
, vol.267
, pp. 246-249
-
-
Feldman, B.1
Poueymirou, W.2
Papaioannou, V.E.3
DeChiara, T.M.4
Goldfarb, M.5
-
56
-
-
0031916557
-
An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination.
-
Meyers EN, Lewandoski M, Martin GR. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 1998, 18: 136-141.
-
(1998)
Nat Genet
, vol.18
, pp. 136-141
-
-
Meyers, E.N.1
Lewandoski, M.2
Martin, G.R.3
-
57
-
-
0034956610
-
Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme.
-
Colvin JS, White AC, Pratt SJ, Ornitz DM. Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 2001, 128:2095-2106.
-
(2001)
Development
, vol.128
, pp. 2095-2106
-
-
Colvin, J.S.1
White, A.C.2
Pratt, S.J.3
Ornitz, D.M.4
-
58
-
-
0032947346
-
Fgf10 is essential for limb and lung formation.
-
Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, et al. Fgf10 is essential for limb and lung formation. Nat Genet 1999, 21:138-141.
-
(1999)
Nat Genet
, vol.21
, pp. 138-141
-
-
Sekine, K.1
Ohuchi, H.2
Fujiwara, M.3
Yamasaki, M.4
Yoshizawa, T.5
Sato, T.6
Yagishita, N.7
Matsui, D.8
Koga, Y.9
Itoh, N.10
-
59
-
-
4444379262
-
Fgf18 is required for embryonic lung alveolar development.
-
Usui H, Shibayama M, Ohbayashi N, Konishi M, Takada S, Itoh N. Fgf18 is required for embryonic lung alveolar development. Biochem Biophys Res Commun 2004, 322:887-892.
-
(2004)
Biochem Biophys Res Commun
, vol.322
, pp. 887-892
-
-
Usui, H.1
Shibayama, M.2
Ohbayashi, N.3
Konishi, M.4
Takada, S.5
Itoh, N.6
-
60
-
-
46049119998
-
FGF-16 is required for embryonic heart development.
-
Lu SY, Sheikh F, Sheppard PC, Fresnoza A, Duckworth ML, Detillieux KA, Cattini PA. FGF-16 is required for embryonic heart development. Biochem Biophys Res Commun 2008, 373:270-274.
-
(2008)
Biochem Biophys Res Commun
, vol.373
, pp. 270-274
-
-
Lu, S.Y.1
Sheikh, F.2
Sheppard, P.C.3
Fresnoza, A.4
Duckworth, M.L.5
Detillieux, K.A.6
Cattini, P.A.7
-
61
-
-
54549104778
-
Fgf16 is required for cardiomyocyte proliferation in the mouse embryonic heart.
-
Hotta Y, Sasaki S, Konishi M, Kinoshita H, Kuwahara K, Nakao K, Itoh N. Fgf16 is required for cardiomyocyte proliferation in the mouse embryonic heart. Dev Dyn 2008, 237:2947-2954.
-
(2008)
Dev Dyn
, vol.237
, pp. 2947-2954
-
-
Hotta, Y.1
Sasaki, S.2
Konishi, M.3
Kinoshita, H.4
Kuwahara, K.5
Nakao, K.6
Itoh, N.7
-
62
-
-
0028598814
-
Murine FGFR-1 is required for early postimplantation growth and axial organization.
-
Deng CX, Wynshaw-Boris A, Shen MM, Daugherty C, Ornitz DM, Leder P. Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev 1994, 8:3045-3057.
-
(1994)
Genes Dev
, vol.8
, pp. 3045-3057
-
-
Deng, C.X.1
Wynshaw-Boris, A.2
Shen, M.M.3
Daugherty, C.4
Ornitz, D.M.5
Leder, P.6
-
63
-
-
0028582035
-
fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation.
-
Yamaguchi TP, Harpal K, Henkemeyer M, Rossant J. fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 1994, 8:3032-3044.
-
(1994)
Genes Dev
, vol.8
, pp. 3032-3044
-
-
Yamaguchi, T.P.1
Harpal, K.2
Henkemeyer, M.3
Rossant, J.4
-
64
-
-
0032574824
-
Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development.
-
Arman E, Haffner-Krausz R, Chen Y, Heath JK, Lonai P. Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci U S A 1998, 95:5082-5087.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, pp. 5082-5087
-
-
Arman, E.1
Haffner-Krausz, R.2
Chen, Y.3
Heath, J.K.4
Lonai, P.5
-
65
-
-
0029928791
-
Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3.
-
Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 1996, 12:390-397.
-
(1996)
Nat Genet
, vol.12
, pp. 390-397
-
-
Colvin, J.S.1
Bohne, B.A.2
Harding, G.W.3
McEwen, D.G.4
Ornitz, D.M.5
-
66
-
-
0029917507
-
Fibroblast growth factor receptor 3 is a negative regulator of bone growth.
-
Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 1996, 84:911-921.
-
(1996)
Cell
, vol.84
, pp. 911-921
-
-
Deng, C.1
Wynshaw-Boris, A.2
Zhou, F.3
Kuo, A.4
Leder, P.5
-
67
-
-
0031700905
-
FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung.
-
Weinstein M, Xu X, Ohyama K, Deng CX. FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 1998, 125: 3615-3623.
-
(1998)
Development
, vol.125
, pp. 3615-3623
-
-
Weinstein, M.1
Xu, X.2
Ohyama, K.3
Deng, C.X.4
-
68
-
-
0037216633
-
Biological activities of fibroblast growth factor-2 in the adult myocardium.
-
Detillieux KA, Sheikh F, Kardami E, Cattini PA. Biological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovasc Res 2003, 57:8-19.
-
(2003)
Cardiovasc Res
, vol.57
, pp. 8-19
-
-
Detillieux, K.A.1
Sheikh, F.2
Kardami, E.3
Cattini, P.A.4
-
69
-
-
61349202774
-
FGFR-1 is required by epicardium-derived cells for myocardial invasion and correct coronary vascular lineage differentiation.
-
Pennisi DJ, Mikawa T. FGFR-1 is required by epicardium-derived cells for myocardial invasion and correct coronary vascular lineage differentiation. Dev Biol 2009, 328:148-159.
-
(2009)
Dev Biol
, vol.328
, pp. 148-159
-
-
Pennisi, D.J.1
Mikawa, T.2
-
70
-
-
0034117026
-
Angioblast differentiation is influenced by the local environment: FGF-2 induces angioblasts and patterns vessel formation in the quail embryo.
-
Cox CM, Poole TJ. Angioblast differentiation is influenced by the local environment: FGF-2 induces angioblasts and patterns vessel formation in the quail embryo. Dev Dyn 2000, 218:371-382.
-
(2000)
Dev Dyn
, vol.218
, pp. 371-382
-
-
Cox, C.M.1
Poole, T.J.2
-
71
-
-
0037459361
-
Involvement of the fibroblast growth factor system in adaptive and chemokine-induced arteriogenesis.
-
Deindl E, Hoefer IE, Fernandez B, Barancik M, Heil M, Strniskova M, Schaper W. Involvement of the fibroblast growth factor system in adaptive and chemokine-induced arteriogenesis. Circ Res 2003, 92:561-568.
-
(2003)
Circ Res
, vol.92
, pp. 561-568
-
-
Deindl, E.1
Hoefer, I.E.2
Fernandez, B.3
Barancik, M.4
Heil, M.5
Strniskova, M.6
Schaper, W.7
-
72
-
-
0036660857
-
Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice.
-
Scholz D, Ziegelhoeffer T, Helisch A, Wagner S, Friedrich C, Podzuweit T, Schaper W. Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol 2002, 34:775-787.
-
(2002)
J Mol Cell Cardiol
, vol.34
, pp. 775-787
-
-
Scholz, D.1
Ziegelhoeffer, T.2
Helisch, A.3
Wagner, S.4
Friedrich, C.5
Podzuweit, T.6
Schaper, W.7
-
73
-
-
18144364350
-
Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis.
-
Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005, 16:159-178.
-
(2005)
Cytokine Growth Factor Rev
, vol.16
, pp. 159-178
-
-
Presta, M.1
Dell'Era, P.2
Mitola, S.3
Moroni, E.4
Ronca, R.5
Rusnati, M.6
-
74
-
-
0027053487
-
Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro.
-
Pepper MS, Ferrara N, Orci L, Montesano R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 1992, 189:824-831.
-
(1992)
Biochem Biophys Res Commun
, vol.189
, pp. 824-831
-
-
Pepper, M.S.1
Ferrara, N.2
Orci, L.3
Montesano, R.4
-
75
-
-
0041440927
-
Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis.
-
Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 1998, 141:1659-1673.
-
(1998)
J Cell Biol
, vol.141
, pp. 1659-1673
-
-
Seghezzi, G.1
Patel, S.2
Ren, C.J.3
Gualandris, A.4
Pintucci, G.5
Robbins, E.S.6
Shapiro, R.L.7
Galloway, A.C.8
Rifkin, D.B.9
Mignatti, P.10
-
76
-
-
0035136140
-
Fibroblast growth factor 2 activation of stromal cell vascular endothelial growth factor expression and angiogenesis.
-
Claffey KP, Abrams K, Shih SC, Brown LF, Mullen A, Keough M. Fibroblast growth factor 2 activation of stromal cell vascular endothelial growth factor expression and angiogenesis. Lab Invest 2001, 81:61-75.
-
(2001)
Lab Invest
, vol.81
, pp. 61-75
-
-
Claffey, K.P.1
Abrams, K.2
Shih, S.C.3
Brown, L.F.4
Mullen, A.5
Keough, M.6
-
77
-
-
34147128640
-
Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.
-
Tsunoda S, Nakamura T, Sakurai H, Saiki I. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization. Cancer Sci 2007, 98:541-548.
-
(2007)
Cancer Sci
, vol.98
, pp. 541-548
-
-
Tsunoda, S.1
Nakamura, T.2
Sakurai, H.3
Saiki, I.4
-
78
-
-
0037828476
-
Involvement of fibroblast growth factors in choroidal angiogenesis and retinal vascularization.
-
Rousseau B, Larrieu-Lahargue F, Bikfalvi A, Javerzat S. Involvement of fibroblast growth factors in choroidal angiogenesis and retinal vascularization. Exp Eye Res 2003, 77:147-156.
-
(2003)
Exp Eye Res
, vol.77
, pp. 147-156
-
-
Rousseau, B.1
Larrieu-Lahargue, F.2
Bikfalvi, A.3
Javerzat, S.4
-
79
-
-
0035204128
-
Vascular endothelial growth factor (VEGF) receptor-2 antagonists inhibit VEGF- and basic fibroblast growth factor-induced angiogenesis in vivo and in vitro.
-
Tille JC, Wood J, Mandriota SJ, Schnell C, Ferrari S, Mestan J, Zhu Z, Witte L, Pepper MS. Vascular endothelial growth factor (VEGF) receptor-2 antagonists inhibit VEGF- and basic fibroblast growth factor-induced angiogenesis in vivo and in vitro. J Pharmacol Exp Ther 2001, 299:1073-1085.
-
(2001)
J Pharmacol Exp Ther
, vol.299
, pp. 1073-1085
-
-
Tille, J.C.1
Wood, J.2
Mandriota, S.J.3
Schnell, C.4
Ferrari, S.5
Mestan, J.6
Zhu, Z.7
Witte, L.8
Pepper, M.S.9
-
80
-
-
0035866394
-
Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesis-dependent and -independent mechanisms.
-
Auguste P, Gursel DB, Lemiere S, Reimers D, Cuevas P, Carceller F, Di Santo JP, Bikfalvi A. Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesis-dependent and -independent mechanisms. Cancer Res 2001, 61: 1717-1726.
-
(2001)
Cancer Res
, vol.61
, pp. 1717-1726
-
-
Auguste, P.1
Gursel, D.B.2
Lemiere, S.3
Reimers, D.4
Cuevas, P.5
Carceller, F.6
Di Santo, J.P.7
Bikfalvi, A.8
-
81
-
-
0037123968
-
Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2.
-
Masaki I, Yonemitsu Y, Yamashita A, Sata S, Tanii M, Komori K, Nakagawa K, Hou X, Nagai Y, Hasegawa M, et al. Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2. Circ Res 2002, 90:966-973.
-
(2002)
Circ Res
, vol.90
, pp. 966-973
-
-
Masaki, I.1
Yonemitsu, Y.2
Yamashita, A.3
Sata, S.4
Tanii, M.5
Komori, K.6
Nakagawa, K.7
Hou, X.8
Nagai, Y.9
Hasegawa, M.10
-
82
-
-
1042289788
-
Fibroblast growth factor-2-mediated capillary morphogenesis of endothelial cells requires signals via Flt-1/vascular endothelial growth factor receptor-1: possible involvement of c-Akt.
-
Kanda S, Miyata Y, Kanetake H. Fibroblast growth factor-2-mediated capillary morphogenesis of endothelial cells requires signals via Flt-1/vascular endothelial growth factor receptor-1: possible involvement of c-Akt. J Biol Chem 2004, 279:4007-4016.
-
(2004)
J Biol Chem
, vol.279
, pp. 4007-4016
-
-
Kanda, S.1
Miyata, Y.2
Kanetake, H.3
-
83
-
-
79959993516
-
FGF-dependent regulation of VEGF receptor 2 expression in mice.
-
Murakami M, Nguyen LT, Hatanaka K, Schachterle W, Chen PY, Zhuang ZW, Black BL, Simons M. FGF-dependent regulation of VEGF receptor 2 expression in mice. J Clin Invest 2011, 121:2668-2678.
-
(2011)
J Clin Invest
, vol.121
, pp. 2668-2678
-
-
Murakami, M.1
Nguyen, L.T.2
Hatanaka, K.3
Schachterle, W.4
Chen, P.Y.5
Zhuang, Z.W.6
Black, B.L.7
Simons, M.8
-
84
-
-
0037172970
-
Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea.
-
Kubo H, Cao R, Brakenhielm E, Makinen T, Cao Y, Alitalo K. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci U S A 2002, 99:8868-8873.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 8868-8873
-
-
Kubo, H.1
Cao, R.2
Brakenhielm, E.3
Makinen, T.4
Cao, Y.5
Alitalo, K.6
-
85
-
-
80051690789
-
Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition.
-
Allen E, Walters IB, Hanahan D. Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. Clin Cancer Res 2011, 17:5299-5310.
-
(2011)
Clin Cancer Res
, vol.17
, pp. 5299-5310
-
-
Allen, E.1
Walters, I.B.2
Hanahan, D.3
-
86
-
-
79952538238
-
Fibroblast growth factor 2 regulates endothelial cell sensitivity to sunitinib.
-
Welti JC, Gourlaouen M, Powles T, Kudahetti SC, Wilson P, Berney DM, Reynolds AR. Fibroblast growth factor 2 regulates endothelial cell sensitivity to sunitinib. Oncogene 2011, 30:1183-1193.
-
(2011)
Oncogene
, vol.30
, pp. 1183-1193
-
-
Welti, J.C.1
Gourlaouen, M.2
Powles, T.3
Kudahetti, S.C.4
Wilson, P.5
Berney, D.M.6
Reynolds, A.R.7
-
87
-
-
32944455535
-
Ectopic activity of fibroblast growth factor receptor 1 in hepatocytes accelerates hepatocarcinogenesis by driving proliferation and vascular endothelial growth factor-induced angiogenesis.
-
Huang X, Yu C, Jin C, Kobayashi M, Bowles CA, Wang F, McKeehan WL. Ectopic activity of fibroblast growth factor receptor 1 in hepatocytes accelerates hepatocarcinogenesis by driving proliferation and vascular endothelial growth factor-induced angiogenesis. Cancer Res 2006, 66:1481-1490.
-
(2006)
Cancer Res
, vol.66
, pp. 1481-1490
-
-
Huang, X.1
Yu, C.2
Jin, C.3
Kobayashi, M.4
Bowles, C.A.5
Wang, F.6
McKeehan, W.L.7
-
88
-
-
2342445936
-
Deregulation of Flk-1/vascular endothelial growth factor receptor-2 in fibroblast growth factor receptor-1-deficient vascular stem cell development.
-
Magnusson P, Rolny C, Jakobsson L, Wikner C, Wu Y, Hicklin DJ, Claesson-Welsh L. Deregulation of Flk-1/vascular endothelial growth factor receptor-2 in fibroblast growth factor receptor-1-deficient vascular stem cell development. J Cell Sci 2004, 117:1513-1523.
-
(2004)
J Cell Sci
, vol.117
, pp. 1513-1523
-
-
Magnusson, P.1
Rolny, C.2
Jakobsson, L.3
Wikner, C.4
Wu, Y.5
Hicklin, D.J.6
Claesson-Welsh, L.7
-
89
-
-
33745129425
-
Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development.
-
Lavine KJ, White AC, Park C, Smith CS, Choi K, Long F, Hui CC, Ornitz DM. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev 2006, 20:1651-1666.
-
(2006)
Genes Dev
, vol.20
, pp. 1651-1666
-
-
Lavine, K.J.1
White, A.C.2
Park, C.3
Smith, C.S.4
Choi, K.5
Long, F.6
Hui, C.C.7
Ornitz, D.M.8
-
90
-
-
34948905351
-
Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis.
-
Nissen LJ, Cao R, Hedlund EM, Wang Z, Zhao X, Wetterskog D, Funa K, Brakenhielm E, Cao Y. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest 2007, 117:2766-2777.
-
(2007)
J Clin Invest
, vol.117
, pp. 2766-2777
-
-
Nissen, L.J.1
Cao, R.2
Hedlund, E.M.3
Wang, Z.4
Zhao, X.5
Wetterskog, D.6
Funa, K.7
Brakenhielm, E.8
Cao, Y.9
-
91
-
-
0037112560
-
Fibroblast growth factor-2 gene transfer can stimulate hepatocyte growth factor expression irrespective of hypoxia-mediated downregulation in ischemic limbs.
-
Onimaru M, Yonemitsu Y, Tanii M, Nakagawa K, Masaki I, Okano S, Ishibashi H, Shirasuna K, Hasegawa M, Sueishi K. Fibroblast growth factor-2 gene transfer can stimulate hepatocyte growth factor expression irrespective of hypoxia-mediated downregulation in ischemic limbs. Circ Res 2002, 91:923-930.
-
(2002)
Circ Res
, vol.91
, pp. 923-930
-
-
Onimaru, M.1
Yonemitsu, Y.2
Tanii, M.3
Nakagawa, K.4
Masaki, I.5
Okano, S.6
Ishibashi, H.7
Shirasuna, K.8
Hasegawa, M.9
Sueishi, K.10
-
92
-
-
33750214507
-
Nonendothelial mesenchymal cell-derived MCP-1 is required for FGF-2-mediated therapeutic neovascularization: critical role of the inflammatory/arteriogenic pathway.
-
Fujii T, Yonemitsu Y, Onimaru M, Tanii M, Nakano T, Egashira K, Takehara T, Inoue M, Hasegawa M, Kuwano H, et al. Nonendothelial mesenchymal cell-derived MCP-1 is required for FGF-2-mediated therapeutic neovascularization: critical role of the inflammatory/arteriogenic pathway. Arterioscler Thromb Vasc Biol 2006, 26:2483-2489.
-
(2006)
Arterioscler Thromb Vasc Biol
, vol.26
, pp. 2483-2489
-
-
Fujii, T.1
Yonemitsu, Y.2
Onimaru, M.3
Tanii, M.4
Nakano, T.5
Egashira, K.6
Takehara, T.7
Inoue, M.8
Hasegawa, M.9
Kuwano, H.10
-
93
-
-
0031459886
-
Basic fibroblast growth factor (bFGF) regulates the expression of the CC chemokine monocyte chemoattractant protein-1 (MCP-1) in autocrine-activated endothelial cells.
-
Wempe F, Lindner V, Augustin HG. Basic fibroblast growth factor (bFGF) regulates the expression of the CC chemokine monocyte chemoattractant protein-1 (MCP-1) in autocrine-activated endothelial cells. Arterioscler Thromb Vasc Biol 1997, 17:2471-2478.
-
(1997)
Arterioscler Thromb Vasc Biol
, vol.17
, pp. 2471-2478
-
-
Wempe, F.1
Lindner, V.2
Augustin, H.G.3
-
94
-
-
0036104276
-
Delivery of FGF genes to wound repair cells enhances arteriogenesis and myogenesis in skeletal muscle.
-
Doukas J, Blease K, Craig D, Ma C, Chandler LA, Sosnowski BA, Pierce GF. Delivery of FGF genes to wound repair cells enhances arteriogenesis and myogenesis in skeletal muscle. Mol Ther 2002, 5:517-527.
-
(2002)
Mol Ther
, vol.5
, pp. 517-527
-
-
Doukas, J.1
Blease, K.2
Craig, D.3
Ma, C.4
Chandler, L.A.5
Sosnowski, B.A.6
Pierce, G.F.7
-
95
-
-
33745028454
-
Critical roles of muscle-secreted angiogenic factors in therapeutic neovascularization.
-
Tateno K, Minamino T, Toko H, Akazawa H, Shimizu N, Takeda S, Kunieda T, Miyauchi H, Oyama T, Matsuura K, et al. Critical roles of muscle-secreted angiogenic factors in therapeutic neovascularization. Circ Res 2006, 98:1194-1202.
-
(2006)
Circ Res
, vol.98
, pp. 1194-1202
-
-
Tateno, K.1
Minamino, T.2
Toko, H.3
Akazawa, H.4
Shimizu, N.5
Takeda, S.6
Kunieda, T.7
Miyauchi, H.8
Oyama, T.9
Matsuura, K.10
-
96
-
-
36048999385
-
Myocardial hypertrophy in the absence of external stimuli is induced by angiogenesis in mice.
-
Tirziu D, Chorianopoulos E, Moodie KL, Palac RT, Zhuang ZW, Tjwa M, Roncal C, Eriksson U, Fu Q, Elfenbein A, et al. Myocardial hypertrophy in the absence of external stimuli is induced by angiogenesis in mice. J Clin Invest 2007, 117:3188-3197.
-
(2007)
J Clin Invest
, vol.117
, pp. 3188-3197
-
-
Tirziu, D.1
Chorianopoulos, E.2
Moodie, K.L.3
Palac, R.T.4
Zhuang, Z.W.5
Tjwa, M.6
Roncal, C.7
Eriksson, U.8
Fu, Q.9
Elfenbein, A.10
-
97
-
-
0034760458
-
Polymeric system for dual growth factor delivery.
-
Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol 2001, 19:1029-1034.
-
(2001)
Nat Biotechnol
, vol.19
, pp. 1029-1034
-
-
Richardson, T.P.1
Peters, M.C.2
Ennett, A.B.3
Mooney, D.J.4
-
98
-
-
2942670180
-
PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma.
-
Ostman A. PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev 2004, 15:275-286.
-
(2004)
Cytokine Growth Factor Rev
, vol.15
, pp. 275-286
-
-
Ostman, A.1
-
99
-
-
0036793520
-
Angiogenesis stimulated by PDGF-CC, a novel member in the PDGF family, involves activation of PDGFR-alphaalpha and -alphabeta receptors.
-
Cao R, Brakenhielm E, Li X, Pietras K, Widenfalk J, Ostman A, Eriksson U, Cao Y. Angiogenesis stimulated by PDGF-CC, a novel member in the PDGF family, involves activation of PDGFR-alphaalpha and -alphabeta receptors. Faseb J 2002, 16:1575-1583.
-
(2002)
Faseb J
, vol.16
, pp. 1575-1583
-
-
Cao, R.1
Brakenhielm, E.2
Li, X.3
Pietras, K.4
Widenfalk, J.5
Ostman, A.6
Eriksson, U.7
Cao, Y.8
-
100
-
-
0038363443
-
Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2.
-
Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, Cao Y. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 2003, 9:604-613.
-
(2003)
Nat Med
, vol.9
, pp. 604-613
-
-
Cao, R.1
Brakenhielm, E.2
Pawliuk, R.3
Wariaro, D.4
Post, M.J.5
Wahlberg, E.6
Leboulch, P.7
Cao, Y.8
-
101
-
-
0030994656
-
Fibroblast growth factor-2 potentiates vascular smooth muscle cell migration to platelet-derived growth factor: upregulation of alpha2beta1 integrin and disassembly of actin filaments.
-
Pickering JG, Uniyal S, Ford CM, Chau T, Laurin MA, Chow LH, Ellis CG, Fish J, Chan BM. Fibroblast growth factor-2 potentiates vascular smooth muscle cell migration to platelet-derived growth factor: upregulation of alpha2beta1 integrin and disassembly of actin filaments. Circ Res 1997, 80:627-637.
-
(1997)
Circ Res
, vol.80
, pp. 627-637
-
-
Pickering, J.G.1
Uniyal, S.2
Ford, C.M.3
Chau, T.4
Laurin, M.A.5
Chow, L.H.6
Ellis, C.G.7
Fish, J.8
Chan, B.M.9
-
102
-
-
24944534593
-
VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling.
-
Kano MR, Morishita Y, Iwata C, Iwasaka S, Watabe T, Ouchi Y, Miyazono K, Miyazawa K. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. J Cell Sci 2005, 118:3759-3768.
-
(2005)
J Cell Sci
, vol.118
, pp. 3759-3768
-
-
Kano, M.R.1
Morishita, Y.2
Iwata, C.3
Iwasaka, S.4
Watabe, T.5
Ouchi, Y.6
Miyazono, K.7
Miyazawa, K.8
-
103
-
-
58249114895
-
Differential roles of PDGFR-alpha and PDGFR-beta in angiogenesis and vessel stability.
-
Zhang J, Cao R, Zhang Y, Jia T, Cao Y, Wahlberg E. Differential roles of PDGFR-alpha and PDGFR-beta in angiogenesis and vessel stability. FASEB J 2009, 23:153-163.
-
(2009)
FASEB J
, vol.23
, pp. 153-163
-
-
Zhang, J.1
Cao, R.2
Zhang, Y.3
Jia, T.4
Cao, Y.5
Wahlberg, E.6
-
104
-
-
79953828409
-
VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines.
-
Stratman AN, Davis MJ, Davis GE. VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines. Blood 2011, 117:3709-3719.
-
(2011)
Blood
, vol.117
, pp. 3709-3719
-
-
Stratman, A.N.1
Davis, M.J.2
Davis, G.E.3
-
105
-
-
0032559851
-
Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization.
-
Navarro P, Ruco L, Dejana E. Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. J Cell Biol 1998, 140:1475-1484.
-
(1998)
J Cell Biol
, vol.140
, pp. 1475-1484
-
-
Navarro, P.1
Ruco, L.2
Dejana, E.3
-
106
-
-
17644379624
-
N-cadherin acts upstream of VE-cadherin in controlling vascular morphogenesis.
-
Luo Y, Radice GL. N-cadherin acts upstream of VE-cadherin in controlling vascular morphogenesis. J Cell Biol 2005, 169:29-34.
-
(2005)
J Cell Biol
, vol.169
, pp. 29-34
-
-
Luo, Y.1
Radice, G.L.2
-
107
-
-
1542299039
-
Induction of apoptosis in cultured endothelial cells by a cadherin antagonist peptide: involvement of fibroblast growth factor receptor-mediated signalling.
-
Erez N, Zamir E, Gour BJ, Blaschuk OW, Geiger B. Induction of apoptosis in cultured endothelial cells by a cadherin antagonist peptide: involvement of fibroblast growth factor receptor-mediated signalling. Exp Cell Res 2004, 294:366-378.
-
(2004)
Exp Cell Res
, vol.294
, pp. 366-378
-
-
Erez, N.1
Zamir, E.2
Gour, B.J.3
Blaschuk, O.W.4
Geiger, B.5
-
108
-
-
33750538665
-
Soluble N-cadherin fragment promotes angiogenesis.
-
Derycke L, Morbidelli L, Ziche M, De Wever O, Bracke M, Van Aken E. Soluble N-cadherin fragment promotes angiogenesis. Clin Exp Metastasis 2006, 23:187-201.
-
(2006)
Clin Exp Metastasis
, vol.23
, pp. 187-201
-
-
Derycke, L.1
Morbidelli, L.2
Ziche, M.3
De Wever, O.4
Bracke, M.5
Van Aken, E.6
-
109
-
-
15444371289
-
ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling.
-
Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, Hartmann D, Saftig P. ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling. Embo J 2005, 24:742-752.
-
(2005)
Embo J
, vol.24
, pp. 742-752
-
-
Reiss, K.1
Maretzky, T.2
Ludwig, A.3
Tousseyn, T.4
de Strooper, B.5
Hartmann, D.6
Saftig, P.7
-
110
-
-
4644269059
-
Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization.
-
Paik JH, Skoura A, Chae SS, Cowan AE, Han DK, Proia RL, Hla T. Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes Dev 2004, 18:2392-2403.
-
(2004)
Genes Dev
, vol.18
, pp. 2392-2403
-
-
Paik, J.H.1
Skoura, A.2
Chae, S.S.3
Cowan, A.E.4
Han, D.K.5
Proia, R.L.6
Hla, T.7
-
111
-
-
33845950805
-
The fibroblast growth factor receptor acid box is essential for interactions with N-cadherin and all of the major isoforms of neural cell adhesion molecule.
-
Sanchez-Heras E, Howell FV, Williams G, Doherty P. The fibroblast growth factor receptor acid box is essential for interactions with N-cadherin and all of the major isoforms of neural cell adhesion molecule. J Biol Chem 2006, 281:35208-35216.
-
(2006)
J Biol Chem
, vol.281
, pp. 35208-35216
-
-
Sanchez-Heras, E.1
Howell, F.V.2
Williams, G.3
Doherty, P.4
-
112
-
-
5444267235
-
N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling.
-
Derycke LD, Bracke ME. N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int J Dev Biol 2004, 48:463-476.
-
(2004)
Int J Dev Biol
, vol.48
, pp. 463-476
-
-
Derycke, L.D.1
Bracke, M.E.2
-
113
-
-
0033759294
-
CAMs and axonal growth: a critical evaluation of the role of calcium and the MAPK cascade.
-
Doherty P, Williams G, Williams EJ. CAMs and axonal growth: a critical evaluation of the role of calcium and the MAPK cascade. Mol Cell Neurosci 2000, 16: 283-295.
-
(2000)
Mol Cell Neurosci
, vol.16
, pp. 283-295
-
-
Doherty, P.1
Williams, G.2
Williams, E.J.3
-
115
-
-
67349220264
-
Regulation of vascular integrity.
-
Murakami M, Simons M. Regulation of vascular integrity. J Mol Med 2009, 87:571-582.
-
(2009)
J Mol Med
, vol.87
, pp. 571-582
-
-
Murakami, M.1
Simons, M.2
-
116
-
-
0028803509
-
Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity.
-
Alon T, Hemo I, Itin A, Pe'er J, Stone J, Keshet E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1995, 1:1024-1028.
-
(1995)
Nat Med
, vol.1
, pp. 1024-1028
-
-
Alon, T.1
Hemo, I.2
Itin, A.3
Pe'er, J.4
Stone, J.5
Keshet, E.6
-
117
-
-
0032952010
-
Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal.
-
Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 1999, 103:159-165.
-
(1999)
J Clin Invest
, vol.103
, pp. 159-165
-
-
Benjamin, L.E.1
Golijanin, D.2
Itin, A.3
Pode, D.4
Keshet, E.5
-
118
-
-
32944466693
-
Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling.
-
Baffert F, Le T, Sennino B, Thurston G, Kuo CJ, Hu-Lowe D, McDonald DM. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am J Physiol Heart Circ Physiol 2006, 290:H547-H559.
-
(2006)
Am J Physiol Heart Circ Physiol
, vol.290
-
-
Baffert, F.1
Le, T.2
Sennino, B.3
Thurston, G.4
Kuo, C.J.5
Hu-Lowe, D.6
McDonald, D.M.7
-
119
-
-
11144354392
-
Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer.
-
Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004, 10:145-147.
-
(2004)
Nat Med
, vol.10
, pp. 145-147
-
-
Willett, C.G.1
Boucher, Y.2
di Tomaso, E.3
Duda, D.G.4
Munn, L.L.5
Tong, R.T.6
Chung, D.C.7
Sahani, D.V.8
Kalva, S.P.9
Kozin, S.V.10
-
120
-
-
34547941252
-
Autocrine VEGF signaling is required for vascular homeostasis.
-
Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML. Autocrine VEGF signaling is required for vascular homeostasis. Cell 2007, 130:691-703.
-
(2007)
Cell
, vol.130
, pp. 691-703
-
-
Lee, S.1
Chen, T.T.2
Barber, C.L.3
Jordan, M.C.4
Murdock, J.5
Desai, S.6
Ferrara, N.7
Nagy, A.8
Roos, K.P.9
Iruela-Arispe, M.L.10
-
121
-
-
55849150964
-
The FGF system has a key role in regulating vascular integrity.
-
Murakami M, Nguyen LT, Zhuang ZW, Moodie KL, Carmeliet P, Stan RV, Simons M. The FGF system has a key role in regulating vascular integrity. J Clin Invest 2008, 118:3355-3366.
-
(2008)
J Clin Invest
, vol.118
, pp. 3355-3366
-
-
Murakami, M.1
Nguyen, L.T.2
Zhuang, Z.W.3
Moodie, K.L.4
Carmeliet, P.5
Stan, R.V.6
Simons, M.7
-
122
-
-
84861302593
-
Fibroblast growth factor signaling potentiates VE-cadherin stability at adherens junctions by regulating SHP2.
-
Hatanaka K, Lanahan AA, Murakami M, Simons M. Fibroblast growth factor signaling potentiates VE-cadherin stability at adherens junctions by regulating SHP2. PLoS One 2012, 7:e37600.
-
(2012)
PLoS One
, vol.7
-
-
Hatanaka, K.1
Lanahan, A.A.2
Murakami, M.3
Simons, M.4
-
123
-
-
84866153571
-
Signaling required for blood vessel maintenance: molecular basis and pathological manifestations.
-
Murakami M. Signaling required for blood vessel maintenance: molecular basis and pathological manifestations. Int J Vasc Med 2012, 2012:293641.
-
(2012)
Int J Vasc Med
, vol.2012
, pp. 293641
-
-
Murakami, M.1
|