메뉴 건너뛰기




Volumn 22, Issue 5, 2012, Pages

Linear time relational prototype based learning

Author keywords

Dissimilarity data; Nystroem approximation; Supervised learning

Indexed keywords

BIOMEDICAL DOMAIN; CLASSIFICATION TECHNIQUE; DATA SETS; DISSIMILARITY DATA; DISSIMILARITY MATRIX; ELECTRONIC DATA; EUCLIDEAN; GENERATIVE TOPOGRAPHIC MAPPING; INTUITIVE INTERFACES; LEARNING VECTOR QUANTIZATION; LINEAR TIME; LINEAR-TIME APPROXIMATION; NYSTROEM APPROXIMATION; QUADRATIC TIME; RELATIONAL DATA;

EID: 84867093070     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065712500219     Document Type: Conference Paper
Times cited : (21)

References (38)
  • 1
    • 46649090716 scopus 로고    scopus 로고
    • Online clustering algorithms
    • W. Barbakh and C. Fyfe, Online clustering algorithms, Int. J. Neural Syst. 18(3) (2008) 185-194.
    • (2008) Int. J. Neural Syst. , vol.18 , Issue.3 , pp. 185-194
    • Barbakh, W.1    Fyfe, C.2
  • 2
    • 58449124909 scopus 로고    scopus 로고
    • Evolving edited k-nearest neighbor classifiers
    • R. Gil-Pita and X. Yao, Evolving edited k-nearest neighbor classifiers, Int. J. Neural Syst. 18(6) (2008) 459-467.
    • (2008) Int. J. Neural Syst. , vol.18 , Issue.6 , pp. 459-467
    • Gil-Pita, R.1    Yao, X.2
  • 3
    • 82655173325 scopus 로고    scopus 로고
    • Rankingbased kernels in applied biomedical diagnostics using support vector machine
    • V. Jumutc, P. Zayakin and A. Borisov, Rankingbased kernels in applied biomedical diagnostics using support vector machine, Int. J. Neural Syst. 21(6) (2011) 459-473.
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.6 , pp. 459-473
    • Jumutc, V.1    Zayakin, P.2    Borisov, A.3
  • 4
    • 78751553712 scopus 로고    scopus 로고
    • A novel approach of clustering with an extended classifier system
    • L. Shi, Y. Shi and Y. Gao, A novel approach of clustering with an extended classifier system, Int. J. Neural Syst. 21(1) (2011) 79-93.
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.1 , pp. 79-93
    • Shi, L.1    Shi, Y.2    Gao, Y.3
  • 5
    • 0003410791 scopus 로고    scopus 로고
    • 3rd edn. (Springer-Verlag, New York, Inc.
    • T. Kohonen (ed.), Self-Organizing Maps, 3rd edn. (Springer-Verlag, New York, Inc., 2001).
    • (2001) Self-Organizing Maps
    • Kohonen, T.1
  • 6
    • 0347963789 scopus 로고    scopus 로고
    • The generative topographic mapping
    • C. Bishop, M. Svensen, and C. Williams, The generative topographic mapping, Neural Comput. 10(1) (1998) 215-234.
    • (1998) Neural Comput. , vol.10 , Issue.1 , pp. 215-234
    • Bishop, C.1    Svensen, M.2    Williams, C.3
  • 7
    • 79960062885 scopus 로고    scopus 로고
    • Foreground detection in video sequences with probabilistic self-organizing
    • E. López-Rubio, R. M. L. Baena and E. Domínguez, Foreground detection in video sequences with probabilistic self-organizing maps, Int. J. Neural Syst. 21(3) (2011) 225-246.
    • (2011) Maps Int. J. Neural Syst. , vol.21 , Issue.3 , pp. 225-246
    • López-Rubio, E.1    Baena, R.M.L.2    Domínguez, E.3
  • 8
    • 72249111970 scopus 로고    scopus 로고
    • Adaptive relevance matrices in learning vector quantization
    • P. Schneider, M. Biehl and B. Hammer, Adaptive relevance matrices in learning vector quantization,' Neural Comput. 21(12) (2009) 3532-3561.
    • (2009) Neural Comput , vol.21 , Issue.12 , pp. 3532-3561
    • Schneider, P.1    Biehl, M.2    Hammer, B.3
  • 10
    • 82655181681 scopus 로고    scopus 로고
    • Discovering significant evolution patterns from satellite image time series
    • F. Petitjean, F. Masseglia, P. Gancarski and G. Forestier, Discovering significant evolution patterns from satellite image time series, Int. J. Neural Syst. 21(6) (2011) 475-489.
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.6 , pp. 475-489
    • Petitjean, F.1    Masseglia, F.2    Gancarski, P.3    Forestier, G.4
  • 11
    • 77953697253 scopus 로고    scopus 로고
    • Principal manifolds and graphs in practice: From molecular biology to dynamical systems
    • A. N. Gorban and A. Zinovyev, Principal manifolds and graphs in practice: From molecular biology to dynamical systems, Int. J. Neural Syst. 20(3) (2011) 219-232.
    • (2011) Int. J. Neural Syst. , vol.20 , Issue.3 , pp. 219-232
    • Gorban, A.N.1    Zinovyev, A.2
  • 12
    • 36248968839 scopus 로고    scopus 로고
    • Evolutionary optimization of sequence kernels for detection of bacterial gene STARTS
    • DOI 10.1142/S0129065707001214, PII S0129065707001214
    • B.Mersch, T. Glasmachers, P. Meinicke and C. Igel, Evolutionary optimization of sequence kernels for detection of bacterial gene starts, Int. J. Neural Syst. 17(5) (2007) 369-381. (Pubitemid 350125292)
    • (2007) International Journal of Neural Systems , vol.17 , Issue.5 , pp. 369-381
    • Mersch, B.1    Glasmachers, T.2    Meinicke, P.3    Igel, C.4
  • 16
    • 40849145323 scopus 로고    scopus 로고
    • Batch kernel som and related laplacian methods for social network analysis
    • R. Boulet, B. Jouve, F. Rossi and N. Villa-Vialaneix, Batch kernel SOM and related Laplacian methods for social network analysis, Neurocomputing 71(7-9) (2008) 1257-1273.
    • (2008) Neurocomputing , vol.71 , Issue.7-9 , pp. 1257-1273
    • Boulet, R.1    Jouve, B.2    Rossi, F.3    Villa-Vialaneix, N.4
  • 17
    • 33746596561 scopus 로고    scopus 로고
    • On the equivalence between kernel self-organising maps and self-organising mixture density networks
    • DOI 10.1016/j.neunet.2006.05.007, PII S0893608006000748
    • H. Yin, On the equivalence between kernel self-organising maps and self-organising mixture density networks, Neural Net. 19(6-7) (2006) 780-784. (Pubitemid 44148949)
    • (2006) Neural Networks , vol.19 , Issue.6-7 , pp. 780-784
    • Yin, H.1
  • 19
    • 33746583167 scopus 로고    scopus 로고
    • Batch and median neural gas
    • DOI 10.1016/j.neunet.2006.05.018, PII S0893608006000815
    • M. Cottrell, B. Hammer, A. Hasenfuss and T. Villmann, Batch and median neural gas, Neural Netw. 19 (2006) 762-771. (Pubitemid 44148955)
    • (2006) Neural Networks , vol.19 , Issue.6-7 , pp. 762-771
    • Cottrell, M.1    Hammer, B.2    Hasenfuss, A.3    Villmann, T.4
  • 20
    • 0036790769 scopus 로고    scopus 로고
    • How to make large self-organizing maps for nonvectorial data
    • T. Kohonen and P. Somervuo, How to make large self-organizing maps for nonvectorial data, Neural Netw. 15 (2002) 945-952.
    • (2002) Neural Netw , vol.15 , pp. 945-952
    • Kohonen, T.1    Somervuo, P.2
  • 21
    • 0032602777 scopus 로고    scopus 로고
    • A stochastic selforganizing map for proximity data
    • T. Graepel and K. Obermayer, A stochastic selforganizing map for proximity data, Neural Comput. 11 (1999) 139-155.
    • (1999) Neural Comput. , vol.11 , pp. 139-155
    • Graepel, T.1    Obermayer, K.2
  • 22
    • 9144234927 scopus 로고    scopus 로고
    • Self-organizing maps and clustering methods for matrix data
    • S. Seo and K. Obermayer, Self-organizing maps and clustering methods for matrix data, Neural Netw. 17 (2004) 1211-1230.
    • (2004) Neural Netw , vol.17 , pp. 1211-1230
    • Seo, S.1    Obermayer, K.2
  • 23
    • 0028667335 scopus 로고
    • Nerf c-means: Non-Euclidean relational fuzzy clustering
    • DOI 10.1016/0031-3203(94)90119-8
    • R. J. Hathaway and J. C. Bezdek, Nerf c-means: Non-Euclidean relational fuzzy clustering, Pattern Recognit. 27(3) (1994) 429-437. (Pubitemid 124017421)
    • (1994) Pattern Recognition , vol.27 , Issue.3 , pp. 429-437
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 24
    • 78149341007 scopus 로고    scopus 로고
    • Topographic mapping of large dissimilarity data sets
    • B. Hammer and A. Hasenfuss, Topographic mapping of large dissimilarity data sets, Neural Comput. 22(9) (2010) 2229-2284.
    • (2010) Neural Comput , vol.22 , Issue.9 , pp. 2229-2284
    • Hammer, B.1    Hasenfuss, A.2
  • 25
    • 79953037235 scopus 로고    scopus 로고
    • Relational generative topographic mapping
    • A. Gisbrecht, B. Mokbel and B. Hammer, Relational generative topographic mapping, Neurocomputing 74 (2011) 1359-1371.
    • (2011) Neurocomputing , vol.74 , pp. 1359-1371
    • Gisbrecht, A.1    Mokbel, B.2    Hammer, B.3
  • 28
    • 79959311539 scopus 로고    scopus 로고
    • The Nystrom approximation for relational generative topographic mappings
    • Whistler BC, Canada, December
    • A. Gisbrecht, B. Mokbel and B. Hammer, The Nystrom approximation for relational generative topographic mappings, in NIPS Workshop on Challenges of Data Visualization,Whistler BC, Canada, December 11, 2010.
    • (2010) NIPS Workshop on Challenges of Data Visualization , vol.11
    • Gisbrecht, A.1    Mokbel, B.2    Hammer, B.3
  • 30
    • 0038159964 scopus 로고    scopus 로고
    • Soft learning vector quantization
    • DOI 10.1162/089976603321891819
    • S. Seo and K. Obermayer, Soft learning vector quantization, Neural Comput. 15(7) (2003) 1589-1604. (Pubitemid 37035561)
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1589-1604
    • Seo, S.1    Obermayer, K.2
  • 31
    • 33847216891 scopus 로고    scopus 로고
    • Dynamics and generalization ability of LVQ algorithms
    • M. Biehl, A. Ghosh and B. Hammer, Dynamics and generalization ability of LVQ algorithms, J. Mach. Learn. Res. 8 (2007) 323-360.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 323-360
    • Biehl, M.1    Ghosh, A.2    Hammer, B.3
  • 33
    • 33745428009 scopus 로고    scopus 로고
    • On the information and representation of non-Euclidean pairwise data
    • DOI 10.1016/j.patcog.2006.04.016, PII S0031320306001555
    • J. Laub, V. Roth, J. M. Buhmann and K.-R. Müller, On the information and representation of non-Euclidean pairwise data. Pattern Recognit. 39 (2006) 1815-1826. (Pubitemid 43947090)
    • (2006) Pattern Recognition , vol.39 , Issue.10 , pp. 1815-1826
    • Laub, J.1    Roth, V.2    Buhmann, J.M.3    Muller, K.-R.4
  • 34
    • 77957779140 scopus 로고    scopus 로고
    • Clustered Nyström method for large scale manifold learning and dimension reduction
    • K. Zhang and J. T. Kwok, Clustered Nyström method for large scale manifold learning and dimension reduction, IEEE Trans. Neural Netw. 21(10) (2010) 1576-1587.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.10 , pp. 1576-1587
    • Zhang, K.1    Kwok, J.T.2
  • 35
    • 0019189775 scopus 로고
    • Quantitative analysis of 6985 digitized trypsin G-banded human metaphase chromosomes
    • C. Lundsteen, J. Phillip and E. Granum, Quantitative analysis of 6985 digitized trypsin G-banded human metaphase chromosomes, Clinical Genet. 18 (1980) 355-370. (Pubitemid 11253841)
    • (1980) Clinical Genetics , vol.18 , Issue.5 , pp. 355-370
    • Lundsteen, C.1    Philip, J.2    Granum, E.3
  • 36
    • 33645324459 scopus 로고    scopus 로고
    • Fast and reliable MALDI-TOF ms-based microorganism identification
    • T. Maier, S. Klebel, U. Renner and M. Kostrzewa, Fast and reliable MALDI-TOF ms-based microorganism identification, Nat. Methods 3 (2006).
    • (2006) Nat. Methods , vol.3
    • Maier, T.1    Klebel, S.2    Renner, U.3    Kostrzewa, M.4
  • 37
    • 0043122944 scopus 로고    scopus 로고
    • ExPASy: The proteomics server for in-depth protein knowledge and analysis
    • DOI 10.1093/nar/gkg563
    • E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel and A. Bairoch, ExPASy: The proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Res. 31 (2003) 3784-3788. (Pubitemid 37442246)
    • (2003) Nucleic Acids Research , vol.31 , Issue.13 , pp. 3784-3788
    • Gasteiger, E.1    Gattiker, A.2    Hoogland, C.3    Ivanyi, I.4    Appel, R.D.5    Bairoch, A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.