메뉴 건너뛰기




Volumn 74, Issue 9, 2011, Pages 1359-1371

Relational generative topographic mapping

Author keywords

Dissimilarity data; Relational data mining; Topographic mapping

Indexed keywords

DATA POINTS; DATA VECTORS; DISSIMILARITY DATA; EUCLIDEAN; EXPECTATION MAXIMIZATION; GENERATIVE TOPOGRAPHIC MAPPING; HIGH DIMENSIONAL DATA; OUT-OF-SAMPLE EXTENSION; RELATIONAL DATA; RELATIONAL DATA MINING; SPARSE REPRESENTATION; STATISTICAL MODELS; TOPOGRAPHIC MAPPING;

EID: 79953037235     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.12.011     Document Type: Article
Times cited : (15)

References (30)
  • 1
    • 0037928080 scopus 로고    scopus 로고
    • A taxonomy for spatiotemporal connectionist networks revisited: the unsupervised case
    • Barreto G.A., Araujo A.F.R., Kremer S. A taxonomy for spatiotemporal connectionist networks revisited: the unsupervised case. Neural Computation 2003, 15(6):1255-1320.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1255-1320
    • Barreto, G.A.1    Araujo, A.F.R.2    Kremer, S.3
  • 2
    • 0026898892 scopus 로고
    • Quantifying the neighborhood preservation of self-organizing feature maps
    • Bauer H.-U., Pawelzik K. Quantifying the neighborhood preservation of self-organizing feature maps. IEEE Transactions on Neural Networks 1992, 3(4):570-579.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.4 , pp. 570-579
    • Bauer, H.-U.1    Pawelzik, K.2
  • 4
    • 40849145323 scopus 로고    scopus 로고
    • Batch kernel SOM and related Laplacian methods for social network analysis
    • Boulet R., Jouve B., Rossi F., Villa N. Batch kernel SOM and related Laplacian methods for social network analysis. Neurocomputing 2008, 71(7-9):1257-1273.
    • (2008) Neurocomputing , vol.71 , Issue.7-9 , pp. 1257-1273
    • Boulet, R.1    Jouve, B.2    Rossi, F.3    Villa, N.4
  • 7
    • 0032602777 scopus 로고    scopus 로고
    • A stochastic self-organizing map for proximity data
    • Graepel T., Obermayer K. A stochastic self-organizing map for proximity data. Neural Computation 1999, 11:139-155.
    • (1999) Neural Computation , vol.11 , pp. 139-155
    • Graepel, T.1    Obermayer, K.2
  • 8
    • 79953040247 scopus 로고    scopus 로고
    • Learning with distance substitution kernels, in: Pattern Recognition-Proceedings of the 26th DAGM Symposium
    • B. Haasdonk, C. Bahlmann, Learning with distance substitution kernels, in: Pattern Recognition-Proceedings of the 26th DAGM Symposium, 2004.
    • (2004)
    • Haasdonk, B.1    Bahlmann, C.2
  • 9
    • 78149341007 scopus 로고    scopus 로고
    • Topographic mapping of large dissimilarity data sets
    • Hammer B., Hasenfuss A. Topographic mapping of large dissimilarity data sets. Neural Computation 2010, 22(9):2229-2284.
    • (2010) Neural Computation , vol.22 , Issue.9 , pp. 2229-2284
    • Hammer, B.1    Hasenfuss, A.2
  • 11
    • 38049059227 scopus 로고    scopus 로고
    • Relational topographic maps
    • M.R. Berthold, J. Shawe-Taylor, N. Lavrac (Eds.)
    • Hasenfuss A., Hammer B. Relational topographic maps. IDA 2007 2007, 93-105. M.R. Berthold, J. Shawe-Taylor, N. Lavrac (Eds.).
    • (2007) IDA 2007 , pp. 93-105
    • Hasenfuss, A.1    Hammer, B.2
  • 12
    • 0028667335 scopus 로고
    • Nerf c-means: non-Euclidean relational fuzzy clustering
    • Hathaway R.J., Bezdek J.C. Nerf c-means: non-Euclidean relational fuzzy clustering. Pattern Recognition 1994, 27(3):429-437.
    • (1994) Pattern Recognition , vol.27 , Issue.3 , pp. 429-437
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 13
    • 0002059002 scopus 로고    scopus 로고
    • Energy functions for self-organizing maps
    • Elsevier, Amsterdam, E. Oja, S. Kaski (Eds.)
    • Heskes T. Energy functions for self-organizing maps. Kohonen Maps 1999, 303-315. Elsevier, Amsterdam. E. Oja, S. Kaski (Eds.).
    • (1999) Kohonen Maps , pp. 303-315
    • Heskes, T.1
  • 15
    • 33746617306 scopus 로고    scopus 로고
    • Local multidimensional scaling
    • Kaski S., Venna J. Local multidimensional scaling. Neural Networks 2006, 19(6):889-899.
    • (2006) Neural Networks , vol.19 , Issue.6 , pp. 889-899
    • Kaski, S.1    Venna, J.2
  • 16
    • 61849137245 scopus 로고    scopus 로고
    • Quality assessment of dimensionality reduction: rank-based criteria
    • Lee J.A., Verleysen M. Quality assessment of dimensionality reduction: rank-based criteria. Neurocomputation 2009, 72(7-9):1431-1443.
    • (2009) Neurocomputation , vol.72 , Issue.7-9 , pp. 1431-1443
    • Lee, J.A.1    Verleysen, M.2
  • 17
    • 77949507946 scopus 로고    scopus 로고
    • Information retrieval perspective to nonlinear dimensionality reduction for data visualization
    • Venna J., Peltonen J., Nybo K., Aidos H., Kaski S. Information retrieval perspective to nonlinear dimensionality reduction for data visualization. Journal of Machine Learning Research 2010, 11:451-490.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 451-490
    • Venna, J.1    Peltonen, J.2    Nybo, K.3    Aidos, H.4    Kaski, S.5
  • 18
    • 79953067047 scopus 로고    scopus 로고
    • The Nyström approximation for relational generative topographic mappings, in: B. Hammer, F. Sha, L. van der Maaten, A. Smola (Eds.), Workshop Proceedings of the NIPS Workshop on Challenges of Data Visualization
    • A. Gisbrecht, B. Mokbel, B. Hammer, The Nyström approximation for relational generative topographic mappings, in: B. Hammer, F. Sha, L. van der Maaten, A. Smola (Eds.), Workshop Proceedings of the NIPS Workshop on Challenges of Data Visualization, 2010.
    • (2010)
    • Gisbrecht, A.1    Mokbel, B.2    Hammer, B.3
  • 19
    • 79953061712 scopus 로고    scopus 로고
    • On the effect of clustering on quality assessment measures for dimensionality reduction. in: B. Hammer, F. Sha, L. van der Maaten, A. Smola (Eds.), Workshop Proceedings of the NIPS Workshop on Challenges of Data Visualization
    • B. Mokbel, A. Gisbrecht, B. Hammer, On the effect of clustering on quality assessment measures for dimensionality reduction. in: B. Hammer, F. Sha, L. van der Maaten, A. Smola (Eds.), Workshop Proceedings of the NIPS Workshop on Challenges of Data Visualization, 2010.
    • (2010)
    • Mokbel, B.1    Gisbrecht, A.2    Hammer, B.3
  • 21
    • 0036790769 scopus 로고    scopus 로고
    • How to make large self-organizing maps for nonvectorial data
    • Kohonen T., Somervuo P. How to make large self-organizing maps for nonvectorial data. Neural Networks 2002, 15:945-952.
    • (2002) Neural Networks , vol.15 , pp. 945-952
    • Kohonen, T.1    Somervuo, P.2
  • 22
    • 33745428009 scopus 로고    scopus 로고
    • On the information and representation of non-Euclidean pairwise data
    • Laub J., Roth V., Buhmann J.M., Müller K.-R. On the information and representation of non-Euclidean pairwise data. Pattern Recognition 2006, 39:1815-1826.
    • (2006) Pattern Recognition , vol.39 , pp. 1815-1826
    • Laub, J.1    Roth, V.2    Buhmann, J.M.3    Müller, K.-R.4
  • 24
    • 79953062676 scopus 로고    scopus 로고
    • Kernel generative topographic mapping
    • M. Verleysen (Ed.)
    • Olier I., Vellido A., Giraldo J. Kernel generative topographic mapping. ESANN '2010 2010, 481-486. M. Verleysen (Ed.).
    • (2010) ESANN '2010 , pp. 481-486
    • Olier, I.1    Vellido, A.2    Giraldo, J.3
  • 27
    • 0029921179 scopus 로고    scopus 로고
    • Quantifying the local reliability of a sequence alignment
    • Mevissen H., Vingron M. Quantifying the local reliability of a sequence alignment. Protein Engineering 1996, 9:127-132.
    • (1996) Protein Engineering , vol.9 , pp. 127-132
    • Mevissen, H.1    Vingron, M.2
  • 28
    • 70349801421 scopus 로고    scopus 로고
    • Graph-based representation of symbolic musical data
    • Springer, A. Torsello, F. Escolano, L. Brun (Eds.)
    • Mokbel B., Hasenfuss A., Hammer B. Graph-based representation of symbolic musical data. GbRPR 2009 2009, 42-51. Springer. A. Torsello, F. Escolano, L. Brun (Eds.).
    • (2009) GbRPR 2009 , pp. 42-51
    • Mokbel, B.1    Hasenfuss, A.2    Hammer, B.3
  • 30
    • 33746596561 scopus 로고    scopus 로고
    • On the equivalence between kernel self-organising maps and self-organising mixture density network
    • Yin H. On the equivalence between kernel self-organising maps and self-organising mixture density network. Neural Networks 2006, 19(6):780-784.
    • (2006) Neural Networks , vol.19 , Issue.6 , pp. 780-784
    • Yin, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.