메뉴 건너뛰기




Volumn 7208 LNAI, Issue PART 1, 2012, Pages 309-321

White box classification of dissimilarity data

Author keywords

dissimilarity data; GLVQ; prototype based classification

Indexed keywords

BLACK BOXES; CLASSIFICATION RESULTS; DISSIMILARITY DATA; DISSIMILARITY MATRIX; GLVQ; GRAM MATRICES; PRE-PROCESSING STEP; WHITE BOX;

EID: 84863364382     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-28942-2_28     Document Type: Conference Paper
Times cited : (7)

References (31)
  • 3
    • 33847216891 scopus 로고    scopus 로고
    • Dynamics and generalization ability of LVQ algorithms
    • Biehl, M., Ghosh, A., Hammer, B.: Dynamics and generalization ability of LVQ algorithms. J. Machine Learning Res. 8, 323-360 (2007)
    • (2007) J. Machine Learning Res. , vol.8 , pp. 323-360
    • Biehl, M.1    Ghosh, A.2    Hammer, B.3
  • 7
    • 78049271779 scopus 로고    scopus 로고
    • Hybrid intelligent algorithms and applications
    • Corchado, E., Abraham, A., Carvalho, A.: Hybrid intelligent algorithms and applications. Information Sciences 180(14), 2633-2634 (2010)
    • (2010) Information Sciences , vol.180 , Issue.14 , pp. 2633-2634
    • Corchado, E.1    Abraham, A.2    Carvalho, A.3
  • 9
    • 61849159831 scopus 로고    scopus 로고
    • Online Figure-Ground Segmentation with Adaptive Metrics in Generalized LVQ
    • Denecke, A., Wersing, H., Steil, J.J., Koerner, E.: Online Figure-Ground Segmentation with Adaptive Metrics in Generalized LVQ. Neurocomputing 72(7-9), 1470-1482 (2009)
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1470-1482
    • Denecke, A.1    Wersing, H.2    Steil, J.J.3    Koerner, E.4
  • 10
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972-976 (2007)
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 12
    • 35048848086 scopus 로고    scopus 로고
    • Learning with Distance Substitution Kernels
    • Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. Springer, Heidelberg
    • Haasdonk, B., Bahlmann, C.: Learning with Distance Substitution Kernels. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 220-227. Springer, Heidelberg (2004)
    • (2004) LNCS , vol.3175 , pp. 220-227
    • Haasdonk, B.1    Bahlmann, C.2
  • 13
    • 78149341007 scopus 로고    scopus 로고
    • Topographic Mapping of Large Dissimilarity Data Sets
    • Hammer, B., Hasenfuss, A.: Topographic Mapping of Large Dissimilarity Data Sets. Neural Computation 22(9), 2229-2284 (2010)
    • (2010) Neural Computation , vol.22 , Issue.9 , pp. 2229-2284
    • Hammer, B.1    Hasenfuss, A.2
  • 14
    • 33745780500 scopus 로고    scopus 로고
    • Network motifs: Structure does not determine function
    • Ingram, P.J., Stumpf, M.P.H., Stark, J.: Network motifs: structure does not determine function. BMC Genomics 7, 108 (2006)
    • (2006) BMC Genomics , vol.7 , pp. 108
    • Ingram, P.J.1    Stumpf, M.P.H.2    Stark, J.3
  • 15
    • 56449127256 scopus 로고    scopus 로고
    • Incremental GRLVQ: Learning Relevant Features for 3D Object Recognition
    • Kietzmann, T., Lange, S., Riedmiller, M.: Incremental GRLVQ: Learning Relevant Features for 3D Object Recognition. Neurocomputing 71(13-15), 2868-2879 (2008)
    • (2008) Neurocomputing , vol.71 , Issue.13-15 , pp. 2868-2879
    • Kietzmann, T.1    Lange, S.2    Riedmiller, M.3
  • 17
    • 0036790769 scopus 로고    scopus 로고
    • How to make large self-organizing maps for nonvectorial data
    • Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15(8-9), 945-952 (2002)
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 945-952
    • Kohonen, T.1    Somervuo, P.2
  • 18
    • 33745428009 scopus 로고    scopus 로고
    • On the information and representation of non-Euclidean pairwise data
    • Laub, J., Roth, V., Buhmann, J.M., Müller, K.-R.: On the information and representation of non-Euclidean pairwise data. Pattern Recognition 39, 1815-1826 (2006)
    • (2006) Pattern Recognition , vol.39 , pp. 1815-1826
    • Laub, J.1    Roth, V.2    Buhmann, J.M.3    Müller, K.-R.4
  • 19
    • 0019189775 scopus 로고
    • Quantitative analysis of 6985 digitized trypsin g-banded human metaphase chromosomes
    • Lundsteen, C., Phillip, J., Granum, E.: Quantitative analysis of 6985 digitized trypsin g-banded human metaphase chromosomes. Clinical Genetics 18, 355-370 (1980)
    • (1980) Clinical Genetics , vol.18 , pp. 355-370
    • Lundsteen, C.1    Phillip, J.2    Granum, E.3
  • 21
    • 33645324459 scopus 로고    scopus 로고
    • Fast and reliable maldi-tof ms- Based microorganism identification
    • Maier, T., Klebel, S., Renner, U., Kostrzewa, M.: Fast and reliable maldi-tof ms- based microorganism identification. Nature Methods (3) (2006)
    • (2006) Nature Methods , Issue.3
    • Maier, T.1    Klebel, S.2    Renner, U.3    Kostrzewa, M.4
  • 22
    • 33745360257 scopus 로고    scopus 로고
    • Edit distance based kernel functions for structural pattern classification
    • Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852-1863 (2006)
    • (2006) Pattern Recognition , vol.39 , Issue.10 , pp. 1852-1863
    • Neuhaus, M.1    Bunke, H.2
  • 24
    • 79251587451 scopus 로고    scopus 로고
    • Sequence Alignment, Mutual Information, and Dissimilarity Measures for Constructing Phylogenies
    • Penner, O., Grassberger, P., Paczuski, M.: Sequence Alignment, Mutual Information, and Dissimilarity Measures for Constructing Phylogenies. PLoS ONE 6(1) (2011)
    • (2011) PLoS ONE , vol.6 , Issue.1
    • Penner, O.1    Grassberger, P.2    Paczuski, M.3
  • 25
    • 10044291614 scopus 로고    scopus 로고
    • A novel kernel prototype-based learning algorithm
    • Qin, A.K., Suganthan, P.N.: A novel kernel prototype-based learning algorithm. In: Proc. of ICPR 2004, pp. 621-624 (2004)
    • (2004) Proc. of ICPR 2004 , pp. 621-624
    • Qin, A.K.1    Suganthan, P.N.2
  • 26
    • 85156210800 scopus 로고    scopus 로고
    • Generalized learning vector quantization
    • Mozer, M.C., Touretzky, D.S., Hasselmo, M.E. (eds.) MIT Press, Cambridge
    • Sato, A., Yamada, K.: Generalized learning vector quantization. In: Mozer, M.C., Touretzky, D.S., Hasselmo, M.E. (eds.) Proc. of NIPS 1995, pp. 423-429. MIT Press, Cambridge (1996)
    • (1996) Proc. of NIPS 1995 , pp. 423-429
    • Sato, A.1    Yamada, K.2
  • 27
    • 72249111970 scopus 로고    scopus 로고
    • Adaptive relevance matrices in learning vector quantization
    • Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21(12), 3532-3561 (2009)
    • (2009) Neural Computation , vol.21 , Issue.12 , pp. 3532-3561
    • Schneider, P.1    Biehl, M.2    Hammer, B.3
  • 28
    • 0038159964 scopus 로고    scopus 로고
    • Soft learning vector quantization
    • Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15(7), 1589-1604 (2003)
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1589-1604
    • Seo, S.1    Obermayer, K.2
  • 30
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. J. of Machine Learning Res. 1, 211-244 (2001)
    • (2001) J. of Machine Learning Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 31
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • MIT Press
    • Williams, C., Seeger, M.: Using the Nyström method to speed up kernel machines. In: Proc. of NIPS 2000, pp. 682-688. MIT Press (2001)
    • (2001) Proc. of NIPS 2000 , pp. 682-688
    • Williams, C.1    Seeger, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.