메뉴 건너뛰기




Volumn 32, Issue 10, 2012, Pages 1607-1629

Confronting Deep Uncertainties in Risk Analysis

Author keywords

AdaBoost; Deep uncertainty; Low regret online decisions; Markov decision process; Model ensemble methods; POMDP; Reinforcement learning; Robust decision making; Robust optimization; Robust risk analysis; SARSA

Indexed keywords

DEEP UNCERTAINTY; ENSEMBLE METHODS; MARKOV DECISION PROCESSES; ONLINE DECISIONS; POMDP; ROBUST DECISIONS; ROBUST OPTIMIZATION; SARSA;

EID: 84866990641     PISSN: 02724332     EISSN: 15396924     Source Type: Journal    
DOI: 10.1111/j.1539-6924.2012.01792.x     Document Type: Article
Times cited : (152)

References (93)
  • 1
    • 77954949434 scopus 로고    scopus 로고
    • Markov decision processes: A tool for sequential decision making under uncertainty
    • Alagoz O, Hsu H, Schaefer AJ, Roberts MS. Markov decision processes: A tool for sequential decision making under uncertainty. Medical Decision Making, 2010; 30(4):474-483.
    • (2010) Medical Decision Making , vol.30 , Issue.4 , pp. 474-483
    • Alagoz, O.1    Hsu, H.2    Schaefer, A.J.3    Roberts, M.S.4
  • 2
    • 77956287357 scopus 로고    scopus 로고
    • Urban traffic signal control using reinforcement learning agents.
    • Balaji PG, German X, Srinivasan D. Urban traffic signal control using reinforcement learning agents. Intelligent Transport Systems, 2010; 4(3):177-188.
    • (2010) Intelligent Transport Systems , vol.4 , Issue.3 , pp. 177-188
    • Balaji, P.G.1    German, X.2    Srinivasan, D.3
  • 4
    • 77955904315 scopus 로고    scopus 로고
    • A soft robust model for optimization under ambiguity
    • Ben-Tal A, Bertsimas D, Brown DB A soft robust model for optimization under ambiguity. Operations Research, 2010; 58(4, Part 2 of 2): 1220-1234.
    • (2010) Operations Research , vol.58 , Issue.4 PART 2 OF 2 , pp. 1220-1234
    • Ben-Tal, A.1    Bertsimas, D.2    Brown, D.B.3
  • 6
    • 84863393058 scopus 로고    scopus 로고
    • Theory and applications of robust optimization
    • Bertsimas D, Brown DB, Caramanis C. Theory and applications of robust optimization. SIAM Review, 2011; 53(3):464-501.
    • (2011) SIAM Review , vol.53 , Issue.3 , pp. 464-501
    • Bertsimas, D.1    Brown, D.B.2    Caramanis, C.3
  • 7
    • 59449106386 scopus 로고    scopus 로고
    • Constructing uncertainty sets for robust linear optimization
    • Bertsimas D, Brown DB Constructing uncertainty sets for robust linear optimization. Operations Research, 2009; 57(6):1483-1495.
    • (2009) Operations Research , vol.57 , Issue.6 , pp. 1483-1495
    • Bertsimas, D.1    Brown, D.B.2
  • 9
    • 0042421807 scopus 로고    scopus 로고
    • Statistical fraud detection: A review
    • Bolton RJ, Hand DJ. Statistical fraud detection: A review. Statistical Science, 1999; 17(3):235-255.
    • (1999) Statistical Science , vol.17 , Issue.3 , pp. 235-255
    • Bolton, R.J.1    Hand, D.J.2
  • 10
    • 72149099073 scopus 로고    scopus 로고
    • Thinking inside the box: A participatory, computer assisted approach to scenario discovery
    • Bryant B, Lempert RJ. Thinking inside the box: A participatory, computer assisted approach to scenario discovery. Technology Forecasting and Social Change, 2010; 77(1):34-49.
    • (2010) Technology Forecasting and Social Change , vol.77 , Issue.1 , pp. 34-49
    • Bryant, B.1    Lempert, R.J.2
  • 11
    • 0022681760 scopus 로고
    • Stochastic dominance: An approach to decision making under risk
    • Buckley JJ. Stochastic dominance: An approach to decision making under risk. Risk Analysis, 1986; 6(1):35-41.
    • (1986) Risk Analysis , vol.6 , Issue.1 , pp. 35-41
    • Buckley, J.J.1
  • 14
    • 80055053199 scopus 로고    scopus 로고
    • Learning to explore and exploit in POMDPs
    • Accessed January 8, 2012
    • Cai C, Liao X, Cari L. Learning to explore and exploit in POMDPs. Pp. 198-206 in Advances in Neural Information Processing Systems 22, 2009. Available at: http://people.ee.duke.edu/~lcarin/LearnE2_NIPS09_22_FINAL.pdf, Accessed January 8, 2012.
    • (2009) Advances in Neural Information Processing Systems 22 , pp. 198-206
    • Cai, C.1    Liao, X.2    Cari, L.3
  • 15
    • 78651475221 scopus 로고    scopus 로고
    • Epidemic and economic impacts of delayed detection of foot-and-mouth disease: A case study of a simulated outbreak in California
    • Accessed January 8, 2012
    • Carpenter TE, O'Brien JM, Hagerman AD, McCarl BA. Epidemic and economic impacts of delayed detection of foot-and-mouth disease: A case study of a simulated outbreak in California. Journal of Veterinary Diagnostic Investigation, 2011; 23(1):26-33. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21217024, Accessed January 8, 2012.
    • (2011) Journal of Veterinary Diagnostic Investigation , vol.23 , Issue.1 , pp. 26-33
    • Carpenter, T.E.1    O'Brien, J.M.2    Hagerman, A.D.3    McCarl, B.A.4
  • 17
    • 80053116521 scopus 로고    scopus 로고
    • Solving multiagent Markov decision processes: A forest management example
    • Modelling: Simulation Society of Australia: New Zealand
    • Chades I, Bouteiller B. Solving multiagent Markov decision processes: A forest management example. In MODSIM 2005 International Congress on Modelling and Simulation. Modelling: Simulation Society of Australia: New Zealand, 2005.
    • (2005) MODSIM 2005 International Congress on Modelling and Simulation
    • Chades, I.1    Bouteiller, B.2
  • 18
    • 70449625632 scopus 로고    scopus 로고
    • Combining incremental hidden Markov model and Adaboost algorithm for anomaly intrusion detection. In Proceedings of the ACM SIGKDD Workshop on Cybersecurity and Intelligence Informatics (Paris, France, June 28 - 28, 2009). in Chen H, Dacier M, Moens M, Paass G, Yang C C (eds). CSI-KDD '09. ACM, New York, DOI:
    • Chen Y, Chen Y. Combining incremental hidden Markov model and Adaboost algorithm for anomaly intrusion detection. In Proceedings of the ACM SIGKDD Workshop on Cybersecurity and Intelligence Informatics (Paris, France, June 28 - 28, 2009). Pp. 3-9 in Chen H, Dacier M, Moens M, Paass G, Yang C C (eds). CSI-KDD '09. ACM, New York, 2009. DOI: http://doi.acm.org/10.1145/1599272.1599276.
    • (2009) , pp. 3-9
    • Chen, Y.1    Chen, Y.2
  • 22
    • 33847046874 scopus 로고    scopus 로고
    • Reinforcement learning for energy conservation and comfort in buildings. Building and Environment, 42, Accessed January 8, 2012
    • Dalamagkidis D, Kolokotsa D, Kalaitzakis K, Stavrakakis GS. Reinforcement learning for energy conservation and comfort in buildings. Building and Environment, 2007; 42:2686-2698. Available at: http://www.tuc.gr/fileadmin/users_data/elci/Kalaitzakis/J.38.pdf, Accessed January 8, 2012.
    • (2007) , pp. 2686-2698
    • Dalamagkidis, D.1    Kolokotsa, D.2    Kalaitzakis, K.3    Stavrakakis, G.S.4
  • 23
    • 48249104032 scopus 로고    scopus 로고
    • A large scale simulation model of pandemic influenza outbreaks for development of dynamic mitigation strategies
    • Accessed January 8, 2012
    • Das TK, Savachkin AA, Zhu Y. A large scale simulation model of pandemic influenza outbreaks for development of dynamic mitigation strategies. IIE Transactions, 2007; 40(9):893-905. Available at: http://www.eng.usf.edu/~das/papers/das_r1.pdf, Accessed January 8, 2012.
    • (2007) IIE Transactions , vol.40 , Issue.9 , pp. 893-905
    • Das, T.K.1    Savachkin, A.A.2    Zhu, Y.3
  • 24
    • 77956017208 scopus 로고    scopus 로고
    • The dynamics of multi-agent reinforcement learning. In Frontiers in Artificial Intelligence and Applications Volume: Proceedings of the 2010 conference on ECAI 2010: 19th European Conference on Artificial Intelligence, Edited by Helder Coelho, Rudi Studer, Michael Wooldridge. Available at
    • Dickens L, Broda K, Russo A. The dynamics of multi-agent reinforcement learning. In Frontiers in Artificial Intelligence and Applications Volume 2010; 215: Proceedings of the 2010 conference on ECAI 2010: 19th European Conference on Artificial Intelligence, Edited by Helder Coelho, Rudi Studer, Michael Wooldridge. Available at: http://www.doc.ic.ac.uk/~lwd03/ecai2010.pdf.
    • (2010) , vol.215
    • Dickens, L.1    Broda, K.2    Russo, A.3
  • 25
    • 84875870067 scopus 로고    scopus 로고
    • Risk-sensitive policies for sustainable renewable resource allocation. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), July , Accessed January 8, 2012
    • Ermon S, Conrad J, Gomes C, Seman B. Risk-sensitive policies for sustainable renewable resource allocation. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), July 2011. Available at: http://ijcai.org/papers11/contents.php, Accessed January 8, 2012.
    • (2011)
    • Ermon, S.1    Conrad, J.2    Gomes, C.3    Seman, B.4
  • 26
    • 39649096058 scopus 로고    scopus 로고
    • Clinical data based optimal STI strategies for HIV: A reinforcement learning approach. in Proceedings of the 45th IEEE Conference on Decision and Control. San Diego, CA, December 13-15, Accessed January 8, 2012
    • Ernst D, Stan G-B, Gongalves J, Wehenkel L. Clinical data based optimal STI strategies for HIV: A reinforcement learning approach. Pp. 667-672 in Proceedings of the 45th IEEE Conference on Decision and Control. San Diego, CA, December 13-15, 2006. Available at: http://www.montefiore.ulg.ac.be/~stan/CDC_2006.pdf, Accessed January 8, 2012.
    • (2006) , pp. 667-672
    • Ernst, D.1    Stan, G.-B.2    Gongalves, J.3    Wehenkel, L.4
  • 27
    • 0013316935 scopus 로고    scopus 로고
    • Adacost: Misclassification cost-sensitive boosting. in Proceedings of the 16th International Conference on Machine Learning Bled, Slovenia
    • Fan W, Stolfo S, Zhang J, Chan P. Adacost: Misclassification cost-sensitive boosting. Pp. 97-105 in Proceedings of the 16th International Conference on Machine Learning Bled, Slovenia, 1999.
    • (1999) , pp. 97-105
    • Fan, W.1    Stolfo, S.2    Zhang, J.3    Chan, P.4
  • 28
    • 80052411244 scopus 로고    scopus 로고
    • PARETO: A novel evolutionary optimization approach to multiobjective IMRTs planning
    • Fiege J, McCurdy B, Potrebko P, Champion H, Cull A. PARETO: A novel evolutionary optimization approach to multiobjective IMRTs planning. Medical Physics, 2011; 38(9):5217-5229.
    • (2011) Medical Physics , vol.38 , Issue.9 , pp. 5217-5229
    • Fiege, J.1    McCurdy, B.2    Potrebko, P.3    Champion, H.4    Cull, A.5
  • 29
    • 85086267296 scopus 로고    scopus 로고
    • Reinforcement learning for spatial processes. World IMACS/MODSIM Congress, Cairns, July 13-17, Australia, Accessed January 8, 2012
    • Forsell, Garcia F, Sabbadin R. Reinforcement learning for spatial processes. World IMACS/MODSIM Congress, Cairns, July 13-17, 2009, Australia Available at: http://www.mssanz.org.au/modsim09/C1/forsell.pdf, Accessed January 8, 2012.
    • (2009)
    • Forsell, G.F.1    Sabbadin, R.2
  • 30
    • 79952141736 scopus 로고    scopus 로고
    • Minimax optimization for handling range and setup uncertainties in proton therapy
    • Fredriksson A, Forsgren A, Hårdemark B. Minimax optimization for handling range and setup uncertainties in proton therapy. Medical Physics, 2011; 38(3):1672-1684.
    • (2011) Medical Physics , vol.38 , Issue.3 , pp. 1672-1684
    • Fredriksson, A.1    Forsgren, A.2    Hårdemark, B.3
  • 31
    • 77954863396 scopus 로고    scopus 로고
    • A modelling approach to support dynamic decision-making in the control of FMD epidemics
    • Accessed January 8, 2012
    • Ge L, Mourits MC, Kristensen AR, Huirne RB. A modelling approach to support dynamic decision-making in the control of FMD epidemics. Preventive Veterinary Medicine, 2010; 95(3-4):167-174. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20471708s, Accessed January 8, 2012.
    • (2010) Preventive Veterinary Medicine , vol.95 , Issue.3-4 , pp. 167-174
    • Ge, L.1    Mourits, M.C.2    Kristensen, A.R.3    Huirne, R.B.4
  • 32
    • 31144477417 scopus 로고    scopus 로고
    • Risk-sensitive reinforcement learning applied to control under constraint
    • Geibel P, Wysotzk F. Risk-sensitive reinforcement learning applied to control under constraint. Journal of Artificial Intelligence Research, 2005; 24:81-108.
    • (2005) Journal of Artificial Intelligence Research , vol.24 , pp. 81-108
    • Geibel, P.1    Wysotzk, F.2
  • 35
    • 49249132281 scopus 로고    scopus 로고
    • Urban traffic control based on learning agents. In Intelligent Transportation Systems Conference, ITSC 2007 IEEE: Seattle, WA DOI: 10.1109/ITSC.2007.4357719
    • Gregoire PL, Desjardins C, Laumonier J, Chaib-draa B. Urban traffic control based on learning agents. In Intelligent Transportation Systems Conference, 2007. ITSC 2007 IEEE: 916-921. Seattle, WA DOI: 10.1109/ITSC.2007.4357719.
    • (2007) , pp. 916-921
    • Gregoire, P.L.1    Desjardins, C.2    Laumonier, J.3    Chaib-draa, B.4
  • 36
    • 0034160101 scopus 로고    scopus 로고
    • Planning treatment of ischemic heart disease with partially observable Markov decision processes
    • http://veryoldwww.cs.pitt.edu/~milos/research/AIMJ-2000.pdf, Accessed January 8, 2012
    • Hauskrecht M, Fraser H. Planning treatment of ischemic heart disease with partially observable Markov decision processes. Artificial Intelligence in Medicine, 2000; 18(3):221-244. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10675716, http://veryoldwww.cs.pitt.edu/~milos/research/AIMJ-2000.pdf, Accessed January 8, 2012.
    • (2000) Artificial Intelligence in Medicine , vol.18 , Issue.3 , pp. 221-244
    • Hauskrecht, M.1    Fraser, H.2
  • 38
    • 33646467175 scopus 로고    scopus 로고
    • Princeton, NJ ; University Press Princeton
    • Hansen LP, Sargent TJ. Robustness. Princeton, NJ ; University Press Princeton, 2008.
    • (2008) Robustness
    • Hansen, L.P.1    Sargent, T.J.2
  • 40
    • 84875050480 scopus 로고    scopus 로고
    • Efficient learning algorithms for changing environments. In ICML '09 Proceedings of the 26th Annual International Conference on Machine Learning, Accessed January 8,
    • Hazen E, Seshadhri C. Efficient learning algorithms for changing environments. In ICML '09 Proceedings of the 26th Annual International Conference on Machine Learning. Available at: http://ie.technion.ac.il/~ehazan/papers/adap-icml2009.pdf, 2007, Accessed January 8, 2012.
    • (2007)
    • Hazen, E.1    Seshadhri, C.2
  • 41
    • 0001259111 scopus 로고    scopus 로고
    • Bayesian model averaging: A tutorial
    • Accessed January 8, 2012
    • Hoeting JA, Madigan D, Raftery AE, Volinsky CT. Bayesian model averaging: A tutorial. Statistical Science, 1999; 14(4):382-401. Available at: http://mpdc.mae.cornell.edu/Courses/UQ/2676803.pdf, Accessed January 8, 2012.
    • (1999) Statistical Science , vol.14 , Issue.4 , pp. 382-401
    • Hoeting, J.A.1    Madigan, D.2    Raftery, A.E.3    Volinsky, C.T.4
  • 44
    • 21844465698 scopus 로고    scopus 로고
    • Adaptive online prediction by following the perturbed leader
    • Accessed January 8, 2012
    • Hutter M, Poland J. Adaptive online prediction by following the perturbed leader. Journal of Machine Learning Research, 2005; 6:639-660. Available at: http://jmlr.csail.mit.edu/papers/volume6/hutter05a/hutter05a.pdf, Accessed January 8, 2012.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 639-660
    • Hutter, M.1    Poland, J.2
  • 45
    • 79961085493 scopus 로고    scopus 로고
    • A robust algorithm of intensity modulated proton therapy for critical tissue sparing and target coverage
    • Accessed January 8, 2012
    • Inaniwa T, Kanematsu N, Furukawa T, Hasegawa A. A robust algorithm of intensity modulated proton therapy for critical tissue sparing and target coverage. Physics in Medicine and Biology, 2011; 56(15):4749-4770. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21753233, Accessed January 8, 2012.
    • (2011) Physics in Medicine and Biology , vol.56 , Issue.15 , pp. 4749-4770
    • Inaniwa, T.1    Kanematsu, N.2    Furukawa, T.3    Hasegawa, A.4
  • 46
    • 34249672336 scopus 로고    scopus 로고
    • Partially observable Markov decision processes with imprecise parameters
    • Itoh H, Nakamura K Partially observable Markov decision processes with imprecise parameters. Artificial Intelligence, 2007; 171(8-9):453-490.
    • (2007) Artificial Intelligence , vol.171 , Issue.8-9 , pp. 453-490
    • Itoh, H.1    Nakamura, K.2
  • 47
    • 84875056252 scopus 로고    scopus 로고
    • Optimizing anthrax outbreak detection using reinforcement learning. In IAAI'07 Proceedings of the 19th National Conference on Innovative Applications of Artificial Intelligence, AAAI Press, Accessed January 8, 2012
    • Izadi MT, Buckeridge DL. Optimizing anthrax outbreak detection using reinforcement learning. In IAAI'07 Proceedings of the 19th National Conference on Innovative Applications of Artificial Intelligence, Volume 2. AAAI Press. Available at: http://www.aaai.org/Papers/AAAI/2007/AAAI07--286.pdf, Accessed January 8, 2012.
    • , vol.2
    • Izadi, M.T.1    Buckeridge, D.L.2
  • 50
    • 67650045779 scopus 로고    scopus 로고
    • Dorsal striatal-midbrain connectivity in humans predicts how reinforcements are used to guide decisions
    • Kahnt T, Park SQ, Cohen MX, Beck A, Heinz A, Wrase J. Dorsal striatal-midbrain connectivity in humans predicts how reinforcements are used to guide decisions. Journal of Cognitive Neuroscience, 2009; 21(7):1332-1345.
    • (2009) Journal of Cognitive Neuroscience , vol.21 , Issue.7 , pp. 1332-1345
    • Kahnt, T.1    Park, S.Q.2    Cohen, M.X.3    Beck, A.4    Heinz, A.5    Wrase, J.6
  • 51
    • 0019540987 scopus 로고
    • On the quantitative definition of risk
    • Kaplan S, Garrick, B J. On the quantitative definition of risk. Risk Analysis, 1981; 1(1):11-27. Available at: http://josiah.berkeley.edu/2007Fall/NE275/CourseReader/3.pdf
    • (1981) Risk Analysis , vol.1 , Issue.1 , pp. 11-27
    • Kaplan, S.1    Garrick, B.J.2
  • 52
    • 0347566334 scopus 로고    scopus 로고
    • Measuring the health effects of air pollution: To what extent can we really say that people are dying from bad air?
    • DOI: 10.1.1.164.6048, Accessed January 8, 2012
    • Koop G, Tole L. Measuring the health effects of air pollution: To what extent can we really say that people are dying from bad air? Journal of Environmental Economics and Management, 2004; 47:30-54. Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?DOI: 10.1.1.164.6048, Accessed January 8, 2012.
    • (2004) Journal of Environmental Economics and Management , vol.47 , pp. 30-54
    • Koop, G.1    Tole, L.2
  • 53
    • 56049125779 scopus 로고    scopus 로고
    • Multiagent reinforcement learning for urban traffic control using coordination graphs. in ECML 2008: Proceedings of the Nineteenth European Conference on Machine Learning, Antwe. p. Belgium
    • Kuyer L, Whiteson S, Bakker B, Vlassis N. Multiagent reinforcement learning for urban traffic control using coordination graphs. Pp. 656-671 in ECML 2008: Proceedings of the Nineteenth European Conference on Machine Learning, Antwe. p. Belgium, 2008.
    • (2008) , pp. 656-671
    • Kuyer, L.1    Whiteson, S.2    Bakker, B.3    Vlassis, N.4
  • 54
    • 84875051351 scopus 로고    scopus 로고
    • Entropy coherent and entropy convex measures of risk. Tilburg University Center Discussion Paper, 2011-031. Accessed January 8, 2012
    • Laeven R, Stadje MA. Entropy coherent and entropy convex measures of risk. Tilburg University Center Discussion Paper, 2011--031. Available at: http://arno.uvt.nl/show.cgi?fid=114115, Accessed January 8, 2012.
    • Laeven, R.1    Stadje, M.A.2
  • 55
    • 84964927960 scopus 로고    scopus 로고
    • Disease propagation analysis and mitigation strategies for effective mass dispensing
    • Lee EK, Chen CH, Pietz F, Benecke B. Disease propagation analysis and mitigation strategies for effective mass dispensing. AMIA Annual Symposium Proceedings, 2010; 2010:427-431. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21347014.
    • (2010) AMIA Annual Symposium Proceedings , vol.2010 , pp. 427-431
    • Lee, E.K.1    Chen, C.H.2    Pietz, F.3    Benecke, B.4
  • 56
    • 35448997206 scopus 로고    scopus 로고
    • Managing the risk of uncertain threshold response: Comparison of robust, optimum, and precautionary approaches
    • Lempert RJ, Collins MT. Managing the risk of uncertain threshold response: Comparison of robust, optimum, and precautionary approaches. Risk Analysis, 2007; 27(4):1009-1026.
    • (2007) Risk Analysis , vol.27 , Issue.4 , pp. 1009-1026
    • Lempert, R.J.1    Collins, M.T.2
  • 58
    • 84875050963 scopus 로고    scopus 로고
    • Missing data and uncertainty in batch reinforcement learning, NIPS-08 Workshop on Model Uncertainty and Risk in RL, Accessed January 8, 2012
    • Lizotte DJ, Gunter L, Laber E, Murphy SA. Missing data and uncertainty in batch reinforcement learning, NIPS-08 Workshop on Model Uncertainty and Risk in RL, 2008. Available at: http://www.cs.uwaterloo.ca/~ppoupart/nips08-workshop/nips08-workshop-schedule.html, Accessed January 8, 2012.
    • (2008)
    • Lizotte, D.J.1    Gunter, L.2    Laber, E.3    Murphy, S.A.4
  • 59
    • 84875055920 scopus 로고    scopus 로고
    • Adaptive fraud detection using Benford's law. In Advances in Artificial Intelligence: 19th Conference of the Canadian Society for Computational Studies of Intelligence, Accessed January 8, 2012
    • Lu F, Boritz JE, Covvey HD. Adaptive fraud detection using Benford's law. In Advances in Artificial Intelligence: 19th Conference of the Canadian Society for Computational Studies of Intelligence, 2006. Available at: http://bit.csc.lsu.edu/~jianhua/petrov.pdf, Accessed January 8, 2012.
    • (2006)
    • Lu, F.1    Boritz, J.E.2    Covvey, H.D.3
  • 60
    • 33750564062 scopus 로고    scopus 로고
    • Ambiguity aversion, robustness, and the variational representation of preferences
    • Maccheroni F, Marinacci M, Rustichini A. Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica, 2006; 74:1447-1498.
    • (2006) Econometrica , vol.74 , pp. 1447-1498
    • Maccheroni, F.1    Marinacci, M.2    Rustichini, A.3
  • 61
    • 0034288942 scopus 로고    scopus 로고
    • The M3-Competition: Results, conclusions and implications
    • Accessed January 8, 2012
    • Makridakis S, Hibon M. The M3-Competition: Results, conclusions and implications. International Journal of Forecasting, 2000; 16:451-476. Available at: http://www.forecastingprinciples.com/files/pdf/Makridakia-The%20M3%20Competition.pdf, Accessed January 8, 2012.
    • (2000) International Journal of Forecasting , vol.16 , pp. 451-476
    • Makridakis, S.1    Hibon, M.2
  • 63
    • 34547963287 scopus 로고    scopus 로고
    • Asymmetric boosting. in Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR
    • Masnadi-Shirazi H, Vasconcelos N. Asymmetric boosting. Pp. 609-619 in Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR, 2007.
    • (2007) , pp. 609-619
    • Masnadi-Shirazi, H.1    Vasconcelos, N.2
  • 64
    • 79955508760 scopus 로고    scopus 로고
    • Allocating conservation resources between areas where persistence of a species is uncertain
    • Accessed January 8, 2012
    • McDonald-Madden E, Chadès I, McCarthy MA, Linkie M, Possingham HP. Allocating conservation resources between areas where persistence of a species is uncertain. Journal of Applied Ecology, 2011; 21(3):844-858. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21639049, Accessed January 8, 2012.
    • (2011) Journal of Applied Ecology , vol.21 , Issue.3 , pp. 844-858
    • McDonald-Madden, E.1    Chadès, I.2    McCarthy, M.A.3    Linkie, M.4    Possingham, H.P.5
  • 65
    • 25144494760 scopus 로고    scopus 로고
    • Prediction error estimation: A comparison of resampling methods
    • Molinaro AM, Simon R, Pfeiffer RM. Prediction error estimation: A comparison of resampling methods. Bioinformatics, 2005; 21(15):3301-3307.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3301-3307
    • Molinaro, A.M.1    Simon, R.2    Pfeiffer, R.M.3
  • 66
    • 73849088741 scopus 로고    scopus 로고
    • Comparison of AdaBoost and support vector machines for detecting Alzheimer's disease through automated hippocampal segmentation
    • Morra JH, Tu Z, Apostolova LG, Green AE, Toga AW, Thompson PM. Comparison of AdaBoost and support vector machines for detecting Alzheimer's disease through automated hippocampal segmentation. IEEE Transactions on Medical Imaging, 2010; 29(1):30-43.
    • (2010) IEEE Transactions on Medical Imaging , vol.29 , Issue.1 , pp. 30-43
    • Morra, J.H.1    Tu, Z.2    Apostolova, L.G.3    Green, A.E.4    Toga, A.W.5    Thompson, P.M.6
  • 67
    • 58849157820 scopus 로고    scopus 로고
    • Bounded-parameter partially observable Markov decision processes. In Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling, Accessed January 8, 2012
    • Ni Y, Liu Z-Q. Bounded-parameter partially observable Markov decision processes. In Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling, 2008. Available at: http://www.aaai.org/Press/Proceedings/icaps08.php, Accessed January 8, 2012.
    • (2008)
    • Ni, Y.1    Liu, Z.-Q.2
  • 70
    • 0141607826 scopus 로고    scopus 로고
    • Lyapunov design for safe reinforcement learning
    • Accessed January 8, 2012
    • Perkins TJ, Barto AG. Lyapunov design for safe reinforcement learning. Journal of Machine Learning Research, 2002; 3:803-883. Available at: http://jmlr.csail.mit.edu/papers/volume3/perkins02a/perkins02a.pdf, Accessed January 8, 2012.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 803-883
    • Perkins, T.J.1    Barto, A.G.2
  • 71
    • 84875054370 scopus 로고    scopus 로고
    • Regret-based reward elicitation for Markov decision processes. NIPS-08 Workshop on Model Uncertainty and Risk in RL, Accessed January 8, 2012
    • Regan K, Boutilier C. Regret-based reward elicitation for Markov decision processes. NIPS-08 Workshop on Model Uncertainty and Risk in RL. Available at: http://www.cs.uwaterloo.ca/~ppoupart/nips08-workshop/nips08-workshop-schedule.html, 2008, Accessed January 8, 2012.
    • (2008)
    • Regan, K.1    Boutilier, C.2
  • 72
    • 9944238860 scopus 로고
    • Dilemmas in a general theory of planning
    • Policy Sciences [Reprinted in N. Cross (ed)., J. Wiley & Sons, Chichester, 1984], Accessed January 8, 2012
    • Rittel H, Webber M. (1973). Dilemmas in a general theory of planning. Policy Sciences 4:155-169. [Reprinted in N. Cross (ed). Developments in Design Methodology, J. Wiley & Sons, Chichester, 1984] Available at: http://www.uctc.net/mwebber/RittelWebberDilemmasGeneral_Theory_of_Planning.pdf, Accessed January 8, 2012.
    • (1973) Developments in Design Methodology , Issue.4 , pp. 155-169
    • Rittel, H.1    Webber, M.2
  • 73
    • 79960110381 scopus 로고    scopus 로고
    • POMDPs: A new perspective on the explore-exploit tradeoff in partially observable domains
    • Ross S, Pineau J, Chaib-draa B, Kreitmann P. POMDPs: A new perspective on the explore-exploit tradeoff in partially observable domains. Journal of Machine Learning Research, 2011; 12:1729-1770.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 1729-1770
    • Ross, S.1    Pineau, J.2    Chaib-draa, B.3    Kreitmann, P.4
  • 74
    • 70350638550 scopus 로고    scopus 로고
    • Results of an Adaboost approach on Alzheimer's disease detection on MRI. Bioinspired Applications in Artificial and Natural Computation Lecture Notes in Computer Science, 2009, Accessed January 8, 2012
    • Savio A, García-Sebastián M, Graña M, Villanúa J. Results of an Adaboost approach on Alzheimer's disease detection on MRI. Bioinspired Applications in Artificial and Natural Computation Lecture Notes in Computer Science, 2009, 5602:2009;114-123. Available at: http://www.ehu.es/ccwintco/uploads/1/11/GarciaSebastianSavio-VBM_SPM_SVM-IWINAC2009_v2.pdf, Accessed January 8, 2012.
    • (2009) , vol.5602 , pp. 114-123
    • Savio, A.1    García-Sebastián, M.2    Graña, M.3    Villanúa, J.4
  • 76
    • 36348966690 scopus 로고    scopus 로고
    • Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making. Journal of Neuroscience
    • Schönberg T, Daw ND, Joel D, O'Doherty JP. Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making. Journal of Neuroscience, 2007; 27(47):12860-12867.
    • (2007) , vol.27 , Issue.47 , pp. 12860-12867
    • Schönberg, T.1    Daw, N.D.2    Joel, D.3    O'Doherty, J.P.4
  • 77
    • 0042202842 scopus 로고    scopus 로고
    • Asian brown cloud-Fact and fantasy
    • Srinivasan J, Gadgil S. Asian brown cloud-Fact and fantasy. Current Science, 2002; 83:586-592.
    • (2002) Current Science , vol.83 , pp. 586-592
    • Srinivasan, J.1    Gadgil, S.2
  • 78
    • 80052095687 scopus 로고    scopus 로고
    • Classification of the toxicity of some organic compounds to tadpoles (Rana Temporaria) through integrating multiple classifiers
    • Su Q, Lu W, Niu B, Liu X. Classification of the toxicity of some organic compounds to tadpoles (Rana Temporaria) through integrating multiple classifiers. Molecular Informatics, 2011; 30(8):672-675.
    • (2011) Molecular Informatics , vol.30 , Issue.8 , pp. 672-675
    • Su, Q.1    Lu, W.2    Niu, B.3    Liu, X.4
  • 79
    • 0004102479 scopus 로고    scopus 로고
    • Cambridge, MA : MIT Press, Accessed January 8, 2012
    • Sutton RS, Barto AG. Reinforcement Learning: An Introduction. Cambridge, MA : MIT Press, 2005. Available at: http://rlai.cs.ualberta.ca/~sutton/book/ebook/the-book.html, Accessed January 8, 2012.
    • (2005) Reinforcement Learning: An Introduction
    • Sutton, R.S.1    Barto, A.G.2
  • 80
    • 20444399504 scopus 로고    scopus 로고
    • Boosting: An ensemble learning tool for compound classification and QSAR modeling
    • Accessed January 8, 2012
    • Svetnik V, Wang T, Tong C, Liaw A, Sheridan RP, Song Q. Boosting: An ensemble learning tool for compound classification and QSAR modeling. Journal of Chemical Information and Modeling, 2005; 45(3):786-799. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15921468, Accessed January 8, 2012.
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.3 , pp. 786-799
    • Svetnik, V.1    Wang, T.2    Tong, C.3    Liaw, A.4    Sheridan, R.P.5    Song, Q.6
  • 82
    • 61449171908 scopus 로고    scopus 로고
    • Early prediction of lung cancer based on the combination of trace element analysis in urine and an Adaboost algorithm
    • Tan C, Chen H, Xia C. Early prediction of lung cancer based on the combination of trace element analysis in urine and an Adaboost algorithm. Journal of Pharmaceutical and Biomedical Analysis, 2009; 49(3):746-752.
    • (2009) Journal of Pharmaceutical and Biomedical Analysis , vol.49 , Issue.3 , pp. 746-752
    • Tan, C.1    Chen, H.2    Xia, C.3
  • 84
    • 57749186229 scopus 로고    scopus 로고
    • Robust evolutionary algorithm design for socio-economic simulation: Some comments
    • Accessed January 8, 2012
    • Waltman L, van Eck NJ. Robust evolutionary algorithm design for socio-economic simulation: Some comments. Computational Economics, 2009; 33:103-105. Available at: http://repub.eur.nl/res/pub/18660/RobustEvolutionary_2008.pdf, Accessed January 8, 2012.
    • (2009) Computational Economics , vol.33 , pp. 103-105
    • Waltman, L.1    van Eck, N.J.2
  • 85
    • 84867013152 scopus 로고    scopus 로고
    • Deriving a near-optimal power management policy using model-free reinforcement learning and Bayesian classification DAC '11 Proceedings of the 48th Design Automation Conference. New York : ACM
    • Wang Y, Xie Q, Ammari A. Deriving a near-optimal power management policy using model-free reinforcement learning and Bayesian classification DAC '11 Proceedings of the 48th Design Automation Conference. New York : ACM, 2011.
    • (2011)
    • Wang, Y.1    Xie, Q.2    Ammari, A.3
  • 87
    • 38049169479 scopus 로고    scopus 로고
    • Defending DDoS attacks using hidden Markov models and cooperative reinforcement learning. In Proceedings, PAISI'07 Proceedings of the 2007 Pacific Asia Conference on Intelligence and Security Informatics. Heidelberg, Germany : Springer-Verlag Berlin
    • Xu X, Sun Y, Huang Z. Defending DDoS attacks using hidden Markov models and cooperative reinforcement learning. In Proceedings, PAISI'07 Proceedings of the 2007 Pacific Asia Conference on Intelligence and Security Informatics. Heidelberg, Germany : Springer-Verlag Berlin, 2007.
    • (2007)
    • Xu, X.1    Sun, Y.2    Huang, Z.3
  • 88
    • 62649151311 scopus 로고    scopus 로고
    • Modelling of forest conversion planning with an adaptive simulation-optimization approach and simultaneous consideration of the values of timber, carbon and biodiversity
    • Yousefpour R, Hanewinkel M. Modelling of forest conversion planning with an adaptive simulation-optimization approach and simultaneous consideration of the values of timber, carbon and biodiversity. Ecological Economics, 2009; 68(6):1711-1722.
    • (2009) Ecological Economics , vol.68 , Issue.6 , pp. 1711-1722
    • Yousefpour, R.1    Hanewinkel, M.2
  • 89
    • 80054890038 scopus 로고    scopus 로고
    • A hybrid multiagent framework with Q-learning for power grid systems restoration. IEEE Transactions on Power Systems
    • Ye D, Zhang M, Sutato D. A hybrid multiagent framework with Q-learning for power grid systems restoration. IEEE Transactions on Power Systems, 2011; 26(4):2434-2441.
    • (2011) , vol.26 , Issue.4 , pp. 2434-2441
    • Ye, D.1    Zhang, M.2    Sutato, D.3
  • 90
    • 70349280578 scopus 로고    scopus 로고
    • Markov decision processes with arbitrary reward processes
    • Yu JY, Mannor S, Shimkin N). Markov decision processes with arbitrary reward processes. Mathematics of Operations Research, 2009; 34(3):737-757.
    • (2009) Mathematics of Operations Research , vol.34 , Issue.3 , pp. 737-757
    • Yu, J.Y.1    Mannor, S.2    Shimkin, N.3
  • 91
    • 70449449564 scopus 로고    scopus 로고
    • Reinforcement learning design for cancer clinical trials. Statistical Medicine, , Accessed January 8, 2012
    • Zhao Y, Kosorok MR, Zeng D. Reinforcement learning design for cancer clinical trials. Statistical Medicine, 2009; 28(26):3294-3315. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19750510, Accessed January 8, 2012.
    • (2009) , vol.28 , Issue.26 , pp. 3294-3315
    • Zhao, Y.1    Kosorok, M.R.2    Zeng, D.3
  • 92
    • 84555204759 scopus 로고    scopus 로고
    • Q-Learning Approach for Hierarchical AGC Scheme of Interconnected Power Grids Energy Procedia
    • Zhou B, Chan KW, Yu T. Q-Learning Approach for Hierarchical AGC Scheme of Interconnected Power Grids Energy Procedia, 2011; 12: 43-52.
    • (2011) , vol.12 , pp. 43-52
    • Zhou, B.1    Chan, K.W.2    Yu, T.3
  • 93
    • 84866990104 scopus 로고    scopus 로고
    • Adaboosting neural networks for credit scoring
    • DOI: 10.1007/978-3-642-01216-7_93
    • Zhou L, Kin Keung Lai. Adaboosting neural networks for credit scoring. Pp. 875-884 in Advances in Intelligent and Soft Computing, Vol. 56, 2009. DOI: 10.1007/978-3-642-01216-7_93.
    • (2009) Advances in Intelligent and Soft Computing , vol.56 , pp. 875-884
    • Zhou, L.1    Kin Keung, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.