메뉴 건너뛰기




Volumn , Issue , 2008, Pages 240-247

Bounded-parameter partially observable Markov decision processes

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; SCHEDULING; STOCHASTIC CONTROL SYSTEMS;

EID: 58849157820     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (10)
  • 1
    • 0001909869 scopus 로고    scopus 로고
    • Incremental Pruning: A simple, fast, exact method for partially observable Markov decision processes
    • Cassandra, A.; Littman, M. L.; and Zhang, N. L. 1997. Incremental Pruning: A simple, fast, exact method for partially observable Markov decision processes. In UA1-97, 54-61.
    • (1997) UA1-97 , pp. 54-61
    • Cassandra, A.1    Littman, M.L.2    Zhang, N.L.3
  • 3
    • 0009236173 scopus 로고    scopus 로고
    • Quasi-Bayesian strategies for efficient plan generation: Application to the planning to observe problem
    • Cozman, F. G., and Krotkov, E. 1996. Quasi-Bayesian strategies for efficient plan generation: application to the planning to observe problem. In UAI-96, 186-193.
    • (1996) UAI-96 , pp. 186-193
    • Cozman, F.G.1    Krotkov, E.2
  • 4
    • 0034272032 scopus 로고    scopus 로고
    • Boundedparameter Markov decision processes
    • Givan, R.; Leach, S.; and Dean, T. 2000. Boundedparameter Markov decision processes. Artificial Intelligence 122(1-2):71-109.
    • (2000) Artificial Intelligence , vol.122 , Issue.1-2 , pp. 71-109
    • Givan, R.1    Leach, S.2    Dean, T.3
  • 5
    • 0037097188 scopus 로고    scopus 로고
    • Generalizing markov decision processes to imprecise probabilities
    • Harmanec, D. 2002. Generalizing markov decision processes to imprecise probabilities. Journal of Statistical Planning and Inference 105:199-213.
    • (2002) Journal of Statistical Planning and Inference , vol.105 , pp. 199-213
    • Harmanec, D.1
  • 6
    • 34249672336 scopus 로고    scopus 로고
    • Partially observable markov decision processes with imprecise parameters
    • Itoh, H., and Nakamura, K. 2007. Partially observable markov decision processes with imprecise parameters. Artificial Intelligence 171(8-9):453-490.
    • (2007) Artificial Intelligence , vol.171 , Issue.8-9 , pp. 453-490
    • Itoh, H.1    Nakamura, K.2
  • 7
    • 0032073263 scopus 로고    scopus 로고
    • Planning and acting in partially observable stochastic domains
    • Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998. Planning and acting in partially observable stochastic domains. Artificial Intelligence 101(1-2):99-134.
    • (1998) Artificial Intelligence , vol.101 , Issue.1-2 , pp. 99-134
    • Kaelbling, L.P.1    Littman, M.L.2    Cassandra, A.R.3
  • 8
    • 58849139522 scopus 로고    scopus 로고
    • Ni, Y., and Liu, Z.-Q. 2008. Bounded-parameter partially observable markov decision processes. Technical Report CityU-SCM-MCG-0501, City University of Hong Kong. Pineau, J.; Gordon, G.; and Thrun, S. 2006. Anytime point-based approximations for large pomdps. Journal of Artificial Intelligence Research 27:335-380.
    • Ni, Y., and Liu, Z.-Q. 2008. Bounded-parameter partially observable markov decision processes. Technical Report CityU-SCM-MCG-0501, City University of Hong Kong. Pineau, J.; Gordon, G.; and Thrun, S. 2006. Anytime point-based approximations for large pomdps. Journal of Artificial Intelligence Research 27:335-380.
  • 10
    • 0028460403 scopus 로고
    • Markov decision processes with imprecise transition probabilities
    • White, C., and Eldeib, H. 1994. Markov decision processes with imprecise transition probabilities. Operations Research 43:739-749.
    • (1994) Operations Research , vol.43 , pp. 739-749
    • White, C.1    Eldeib, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.