메뉴 건너뛰기




Volumn 13, Issue 3, 2007, Pages 301-312

Multiclass corporate failure prediction by Adaboost.M1

Author keywords

Adaboost.M1; Corporate failure prediction; Ensemble classifiers

Indexed keywords


EID: 34547105779     PISSN: 10830898     EISSN: 1573966X     Source Type: Journal    
DOI: 10.1007/s11294-007-9090-2     Document Type: Article
Times cited : (53)

References (18)
  • 2
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23 (4), 589-609.
    • (1968) Journal of Finance , vol.23 , Issue.4 , pp. 589-609
    • Altman, E.I.1
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithm: Bagging, boosting and variants
    • Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithm: Bagging, boosting and variants. Machine Learning, 36, 105-142.
    • (1999) Machine Learning , vol.36 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 0002554419 scopus 로고
    • Financial ratios as predictors of failure. Empirical research in accounting: Selected studies
    • Beaver, W. H. (1966). Financial ratios as predictors of failure. Empirical research in accounting: Selected studies. Journal of Accounting Research, 4(Supplement), 71-111.
    • (1966) Journal of Accounting Research , vol.4 , Issue.SUPPL. , pp. 71-111
    • Beaver, W.H.1
  • 5
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman, L. (1998). Arcing classifiers. Annals of Statistics, 26 (3), 801-849.
    • (1998) Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 9
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55 (1), 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 10
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 38 (2), 337-374.
    • (2000) Annals of Statistics , vol.38 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 11
    • 84944837333 scopus 로고
    • Introducing recursive partitioning for financial classification: The case of financial distress
    • Frydman, H., Altman, E., & Kao, D. (1985). Introducing recursive partitioning for financial classification: The case of financial distress. Journal of Finance, 40 (1), 269-291.
    • (1985) Journal of Finance , vol.40 , Issue.1 , pp. 269-291
    • Frydman, H.1    Altman, E.2    Kao, D.3
  • 13
    • 0000666375 scopus 로고
    • Financial ratios and the probabilistic prediction of bankruptcy
    • Ohlson, J. A. (1980) Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18 (1), 5-12.
    • (1980) Journal of Accounting Research , vol.18 , Issue.1 , pp. 5-12
    • Ohlson, J.A.1
  • 14
    • 1842607847 scopus 로고    scopus 로고
    • R Development Core Team Viena: R Foundation for Statistical Computing
    • R Development Core Team (2004). R: A language and environment for statistical computing. Viena: R Foundation for Statistical Computing. http://www.R-project.org
    • (2004) R: A Language and Environment for Statistical Computing
  • 17
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural network
    • Wilson, R. L., & Sharda, R. (1994). Bankruptcy prediction using neural network. Decision Support Systems, 11 (5), 545-557.
    • (1994) Decision Support Systems , vol.11 , Issue.5 , pp. 545-557
    • Wilson, R.L.1    Sharda, R.2
  • 18
    • 0001953906 scopus 로고
    • Methodological issues related to the estimation of financial distress prediction models
    • Zmijewski, M. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59-86.
    • (1984) Journal of Accounting Research , vol.22 , pp. 59-86
    • Zmijewski, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.