-
1
-
-
77950501911
-
Rare and emerging Candida Species
-
Johnson EM. Rare and emerging Candida Species. Curr Fungal Infect Rep 2009; 3: 152-9.
-
(2009)
Curr Fungal Infect Rep
, vol.3
, pp. 152-159
-
-
Johnson, E.M.1
-
2
-
-
33846466508
-
Epidemiology of invasive candidiasis: a persistent public health problem
-
Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007; 20: 133-63.
-
(2007)
Clin Microbiol Rev
, vol.20
, pp. 133-163
-
-
Pfaller, M.A.1
Diekema, D.J.2
-
3
-
-
33644529756
-
Breakthrough fungemia caused by fluconazole-resistant Candida albicans with decreased susceptibility to voriconazole in patients with hematologic malignancies
-
Myoken Y, Kyo T, Sugata T et al. Breakthrough fungemia caused by fluconazole-resistant Candida albicans with decreased susceptibility to voriconazole in patients with hematologic malignancies. Haematologica 2006; 91: 287-8.
-
(2006)
Haematologica
, vol.91
, pp. 287-288
-
-
Myoken, Y.1
Kyo, T.2
Sugata, T.3
-
4
-
-
62949160280
-
Triazole-resistant candidaemia following posaconazole exposure
-
Weiler S, Lass-Flörl C, Auberger J et al. Triazole-resistant candidaemia following posaconazole exposure. Int J Antimicrob Agents 2009; 33: 494-5.
-
(2009)
Int J Antimicrob Agents
, vol.33
, pp. 494-495
-
-
Weiler, S.1
Lass-Flörl, C.2
Auberger, J.3
-
5
-
-
0036488166
-
Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences
-
Sanglard D, Odds FC. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2002; 2: 73-85.
-
(2002)
Lancet Infect Dis
, vol.2
, pp. 73-85
-
-
Sanglard, D.1
Odds, F.C.2
-
6
-
-
33646131416
-
Resistance mechanisms in fluconazole-resistant Candida albicans isolates from vaginal candidiasis
-
Cernicka J, Subik J. Resistance mechanisms in fluconazole-resistant Candida albicans isolates from vaginal candidiasis. Int J Antimicrob Agents 2006; 27: 403-8.
-
(2006)
Int J Antimicrob Agents
, vol.27
, pp. 403-408
-
-
Cernicka, J.1
Subik, J.2
-
7
-
-
24144444094
-
Inactivation of sterol D5 6-desaturase attenuates virulence in Candida albicans
-
Chau AS, Gurnani M, Hawkinson R et al. Inactivation of sterol D5,6-desaturase attenuates virulence in Candida albicans. Antimicrob Agents Chemother 2005; 49: 3646-51.
-
(2005)
Antimicrob Agents Chemother
, vol.49
, pp. 3646-3651
-
-
Chau, A.S.1
Gurnani, M.2
Hawkinson, R.3
-
8
-
-
35348903338
-
Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates
-
Coste A, Selmecki A, Forche A et al. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell 2007; 6: 1889-904.
-
(2007)
Eukaryot Cell
, vol.6
, pp. 1889-1904
-
-
Coste, A.1
Selmecki, A.2
Forche, A.3
-
9
-
-
33646171879
-
A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans
-
Coste A, Turner V, Ischer F et al. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 2006; 172: 2139-56.
-
(2006)
Genetics
, vol.172
, pp. 2139-2156
-
-
Coste, A.1
Turner, V.2
Ischer, F.3
-
10
-
-
47749142093
-
Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains
-
Dunkel N, Blass J, Rogers PD et al. Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol Microbiol 2008; 69: 827-40.
-
(2008)
Mol Microbiol
, vol.69
, pp. 827-840
-
-
Dunkel, N.1
Blass, J.2
Rogers, P.D.3
-
11
-
-
47049101245
-
A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate
-
Dunkel N, Liu TT, Barker KS et al. A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot Cell 2008; 7: 1180-90.
-
(2008)
Eukaryot Cell
, vol.7
, pp. 1180-1190
-
-
Dunkel, N.1
Liu, T.T.2
Barker, K.S.3
-
12
-
-
2542494102
-
Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles
-
Chau AS, Mendrick CA, Sabatelli FJ et al. Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother 2004; 48: 2124-31.
-
(2004)
Antimicrob Agents Chemother
, vol.48
, pp. 2124-2131
-
-
Chau, A.S.1
Mendrick, C.A.2
Sabatelli, F.J.3
-
13
-
-
0031024163
-
Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol D5 6-desaturation
-
Kelly SL, Lamb DC, Kelly DE et al. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol D5,6-desaturation. FEBS Lett 1997; 400: 80-2.
-
(1997)
FEBS Lett
, vol.400
, pp. 80-82
-
-
Kelly, S.L.1
Lamb, D.C.2
Kelly, D.E.3
-
14
-
-
77956101405
-
A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14a-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B
-
Martel CM, Parker JE, Bader O et al. A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14a-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B. Antimicrob Agents Chemother 2010; 54: 3578-83.
-
(2010)
Antimicrob Agents Chemother
, vol.54
, pp. 3578-3583
-
-
Martel, C.M.1
Parker, J.E.2
Bader, O.3
-
15
-
-
78049243452
-
Identification and characterization of four azole-resistant erg3 mutants of Candida albicans
-
Martel CM, Parker JE, Bader O et al. Identification and characterization of four azole-resistant erg3 mutants of Candida albicans. Antimicrob Agents Chemother 2010; 54: 4527-33.
-
(2010)
Antimicrob Agents Chemother
, vol.54
, pp. 4527-4533
-
-
Martel, C.M.1
Parker, J.E.2
Bader, O.3
-
16
-
-
0031035553
-
Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patientswith leukemia
-
Nolte FS, Parkinson T, Falconer DJ et al. Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patientswith leukemia. Antimicrob Agents Chemother 1997; 41: 196-9.
-
(1997)
Antimicrob Agents Chemother
, vol.41
, pp. 196-199
-
-
Nolte, F.S.1
Parkinson, T.2
Falconer, D.J.3
-
17
-
-
79959187026
-
Amino acid substitutions at the major insertion loop of Candida albicans sterol 14a-demethylase are involved in fluconazole resistance
-
Alvarez-Rueda N, Fleury A, Morio F et al. Amino acid substitutions at the major insertion loop of Candida albicans sterol 14a-demethylase are involved in fluconazole resistance. PLoS One 2011; 6: e21239.
-
(2011)
PLoS One
, vol.6
-
-
Alvarez-Rueda, N.1
Fleury, A.2
Morio, F.3
-
18
-
-
77749291956
-
Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature
-
Morio F, Loge C, Besse B et al. Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature. Diagn Microbiol Infect Dis 2010; 66: 373-84.
-
(2010)
Diagn Microbiol Infect Dis
, vol.66
, pp. 373-384
-
-
Morio, F.1
Loge, C.2
Besse, B.3
-
20
-
-
79959193758
-
Clinical breakpoints for voriconazole and Candida spp. revisited: review of microbiologic, molecular, pharmacodynamic, and clinical data as they pertain to the development of species-specific interpretive criteria
-
Pfaller MA, Andes D, Arendrup MC et al. Clinical breakpoints for voriconazole and Candida spp. revisited: review of microbiologic, molecular, pharmacodynamic, and clinical data as they pertain to the development of species-specific interpretive criteria. Diagn Microbiol Infect Dis 2011; 70: 330-43.
-
(2011)
Diagn Microbiol Infect Dis
, vol.70
, pp. 330-343
-
-
Pfaller, M.A.1
Andes, D.2
Arendrup, M.C.3
-
21
-
-
77957893941
-
Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods
-
Pfaller MA, Andes D, Diekema DJ et al. Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Updat 2010; 13: 180-95.
-
(2010)
Drug Resist Updat
, vol.13
, pp. 180-195
-
-
Pfaller, M.A.1
Andes, D.2
Diekema, D.J.3
-
22
-
-
0028810137
-
Comparison of Etest and National Committee for Clinical Laboratory Standards broth macrodilution method for antifungal susceptibility testing: enhanced ability to detect amphotericin B-resistant Candida isolates
-
Wanger A, Mills K, Nelson PW et al. Comparison of Etest and National Committee for Clinical Laboratory Standards broth macrodilution method for antifungal susceptibility testing: enhanced ability to detect amphotericin B-resistant Candida isolates. Antimicrob Agents Chemother 1995; 39: 2520-2.
-
(1995)
Antimicrob Agents Chemother
, vol.39
, pp. 2520-2522
-
-
Wanger, A.1
Mills, K.2
Nelson, P.W.3
-
23
-
-
79954997194
-
Design, synthesis, and in vitro antifungal activity of 1-[(4-substituted-benzyl)methylamino]-2-(2,4-difluorophenyl)-3-(1H-1,2,4-t riazol-1-yl)propan-2-ols
-
Guillon R, Pagniez F, Giraud F et al. Design, synthesis, and in vitro antifungal activity of 1-[(4-substituted-benzyl)methylamino]-2-(2,4-difluorophenyl)-3-(1H-1,2,4-t riazol-1-yl)propan-2-ols. ChemMedChem 2011; 6: 816-25.
-
(2011)
ChemMedChem
, vol.6
, pp. 816-825
-
-
Guillon, R.1
Pagniez, F.2
Giraud, F.3
-
24
-
-
0037137244
-
Transcription of sterol D5,6-desaturase and sterol 14a-demethylase is induced in the plant pathogenic ascomycete, Leptosphaeria maculans, during treatment with a triazole fungicide
-
Griffiths KM, Howlett BJ. Transcription of sterol D5,6-desaturase and sterol 14a-demethylase is induced in the plant pathogenic ascomycete, Leptosphaeria maculans, during treatment with a triazole fungicide. FEMS Microbiol Lett 2002; 217: 81-7.
-
(2002)
FEMS Microbiol Lett
, vol.217
, pp. 81-87
-
-
Griffiths, K.M.1
Howlett, B.J.2
-
25
-
-
70350026151
-
Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation
-
Sanglard D, Coste A, Ferrari S. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res 2009; 9: 1029-50.
-
(2009)
FEMS Yeast Res
, vol.9
, pp. 1029-1050
-
-
Sanglard, D.1
Coste, A.2
Ferrari, S.3
-
26
-
-
0043270593
-
Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents
-
Sanglard D, Ischer F, Parkinson T et al. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 2003; 47: 2404-12.
-
(2003)
Antimicrob Agents Chemother
, vol.47
, pp. 2404-2412
-
-
Sanglard, D.1
Ischer, F.2
Parkinson, T.3
-
27
-
-
0028942449
-
Mode of action and resistance to azole antifungals associated with the formation of 14a-methylergosta-8,24(28)-dien-3b,6a-diol
-
Kelly SL, Lamb DC, Corran AJ et al. Mode of action and resistance to azole antifungals associated with the formation of 14a-methylergosta-8,24(28)-dien-3b,6a-diol. BiochemBiophys Res Commun1995; 207: 910-5.
-
(1995)
BiochemBiophys Res Commun
, vol.207
, pp. 910-915
-
-
Kelly, S.L.1
Lamb, D.C.2
Corran, A.J.3
-
28
-
-
84858663078
-
6-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence
-
Vale-Silva LA, Coste AT, Ischer F et al. Azole resistance by loss of function of the sterol D5,6-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence. Antimicrob Agents Chemother 2012; 56: 1960-8.
-
(2012)
Antimicrob Agents Chemother
, vol.56
, pp. 1960-1968
-
-
Vale-Silva, L.A.1
Coste, A.T.2
Ischer, F.3
-
29
-
-
0028883458
-
Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility
-
Geber A, Hitchcock CA, Swartz JE et al. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother 1995; 39: 2708-17.
-
(1995)
Antimicrob Agents Chemother
, vol.39
, pp. 2708-2717
-
-
Geber, A.1
Hitchcock, C.A.2
Swartz, J.E.3
-
30
-
-
0042268120
-
Molecular mechanisms of itraconazole resistance in Candida dubliniensis
-
Pinjon E, Moran GP, Jackson CJ et al. Molecular mechanisms of itraconazole resistance in Candida dubliniensis. Antimicrob Agents Chemother 2003; 47: 2424-37.
-
(2003)
Antimicrob Agents Chemother
, vol.47
, pp. 2424-2437
-
-
Pinjon, E.1
Moran, G.P.2
Jackson, C.J.3
-
31
-
-
0042424651
-
Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae
-
Young LY, Hull CM, Heitman J. Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob Agents Chemother 2003; 47: 2717-24.
-
(2003)
Antimicrob Agents Chemother
, vol.47
, pp. 2717-2724
-
-
Young, L.Y.1
Hull, C.M.2
Heitman, J.3
-
32
-
-
0032783722
-
Cloning, sequencing, expression and allelic sequence diversity of ERG3 (C-5 sterol desaturase gene) in Candida albicans
-
Miyazaki Y, Geber A, Miyazaki H et al. Cloning, sequencing, expression and allelic sequence diversity of ERG3 (C-5 sterol desaturase gene) in Candida albicans. Gene 1999; 236: 43-51.
-
(1999)
Gene
, vol.236
, pp. 43-51
-
-
Miyazaki, Y.1
Geber, A.2
Miyazaki, H.3
-
33
-
-
57849086887
-
DNA microarray analysis of fluconazole resistance in a laboratory Candida albicans strain
-
Yan L, Zhang J, Li M et al. DNA microarray analysis of fluconazole resistance in a laboratory Candida albicans strain. Acta Biochim Biophys Sin (Shanghai) 2008; 40: 1048-60.
-
(2008)
Acta Biochim Biophys Sin (Shanghai)
, vol.40
, pp. 1048-1060
-
-
Yan, L.1
Zhang, J.2
Li, M.3
-
34
-
-
31944440019
-
Fluconazole treatment is effective against a Candida albicans erg3/erg3 mutant in vivo despite in vitro resistance
-
Miyazaki T, Miyazaki Y, Izumikawa K et al. Fluconazole treatment is effective against a Candida albicans erg3/erg3 mutant in vivo despite in vitro resistance. Antimicrob Agents Chemother 2006; 50: 580-6.
-
(2006)
Antimicrob Agents Chemother
, vol.50
, pp. 580-586
-
-
Miyazaki, T.1
Miyazaki, Y.2
Izumikawa, K.3
-
35
-
-
4444297608
-
Ergosterol gene expression in wild-type and ergosterol-deficient mutants of Candida albicans
-
Pierson CA, Eckstein J, Barbuch R et al. Ergosterol gene expression in wild-type and ergosterol-deficient mutants of Candida albicans. Med Mycol 2004; 42: 385-9.
-
(2004)
Med Mycol
, vol.42
, pp. 385-389
-
-
Pierson, C.A.1
Eckstein, J.2
Barbuch, R.3
-
36
-
-
0025866521
-
Cloning, disruption and sequence of the gene encoding yeast C-5 sterol desaturase
-
Arthington BA, Bennett LG, Skatrud PL et al. Cloning, disruption and sequence of the gene encoding yeast C-5 sterol desaturase. Gene 1991; 102: 39-44.
-
(1991)
Gene
, vol.102
, pp. 39-44
-
-
Arthington, B.A.1
Bennett, L.G.2
Skatrud, P.L.3
|