메뉴 건너뛰기




Volumn 3918 LNAI, Issue , 2006, Pages 577-593

Ranking outliers using symmetric neighborhood relationship

Author keywords

[No Author keywords available]

Indexed keywords

CLASSICAL OUTLIER ANALYSIS ALGORITHMS; DENSITY DISTRIBUTION; NEIGHBORHOOD RELATIONSHIP;

EID: 33745772192     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11731139_68     Document Type: Conference Paper
Times cited : (348)

References (26)
  • 1
    • 0034832620 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • C. Aggarwal and P. Yu: Outlier Detection for High Dimensional Data. SIGMOD 2001
    • (2001) SIGMOD
    • Aggarwal, C.1    Yu, P.2
  • 3
    • 51349089444 scopus 로고    scopus 로고
    • AutoPart: Parameter-free graph partitioning and outlier detection
    • D. Chakrabarti: AutoPart: Parameter-Free Graph Partitioning and Outlier Detection. PKDD 2004
    • PKDD 2004
    • Chakrabarti, D.1
  • 4
    • 33745800288 scopus 로고    scopus 로고
    • On complementarity of cluster and outlier detection schemes
    • Z. X. Chen, A. W. Fu, J. Tang: On Complementarity of Cluster and Outlier Detection Schemes. DaWaK 2003
    • (2003) DaWaK
    • Chen, Z.X.1    Fu, A.W.2    Tang, J.3
  • 5
    • 84879085576 scopus 로고    scopus 로고
    • Enhancements on local outlier detection
    • A. L. Chiu, A. W. Fu: Enhancements on Local Outlier Detection, IDEAS 2003
    • (2003) IDEAS
    • Chiu, A.L.1    Fu, A.W.2
  • 6
    • 45749146270 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases
    • M. Ester, H. P. Kriegel et al.: A Density-based Algorithm for Discovering Clusters in Large Spatial Databases. KDD 1996
    • (1996) KDD
    • Ester, M.1    Kriegel, H.P.2
  • 7
    • 0032091595 scopus 로고    scopus 로고
    • Cure: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, and K.Shim: Cure: An Efficient Clustering Algorithm for Large Databases. SIGMOD 1998
    • (1998) SIGMOD
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 8
    • 10044269754 scopus 로고    scopus 로고
    • Outlier detection using k-nearest neighbour graph
    • V. Hautamki, I. Krkkinen and P. Frnti: Outlier Detection Using k-nearest Neighbour Graph, ICPR 2004.
    • (2004) ICPR
    • Hautamki, V.1    Krkkinen, I.2    Frnti, P.3
  • 11
    • 84942892810 scopus 로고    scopus 로고
    • Mining top-n local outliers in large databases
    • W. Jin, K. H. Tung and J. W. Han: Mining Top-n Local Outliers in Large Databases. KDD 2001
    • (2001) KDD
    • Jin, W.1    Tung, K.H.2    Han, J.W.3
  • 12
    • 0003858566 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • E. Knorr, R. Ng: Algorithms for Mining Distance-Based Outliers in Large Datasets. VLDB 1998
    • (1998) VLDB
    • Knorr, E.1    Ng, R.2
  • 13
    • 0012905555 scopus 로고    scopus 로고
    • Finding intensional knowledge of distance-based outliers
    • E. Knorr and R. Ng: Finding Intensional Knowledge of Distance-Based Outliers. VLDB 1999
    • (1999) VLDB
    • Knorr, E.1    Ng, R.2
  • 14
    • 0039845446 scopus 로고    scopus 로고
    • Influence sets based on reverse nearest neighbor queries
    • F. Korn and S. Muthukrishnan: Influence Sets Based on Reverse Nearest Neighbor Queries. SIGMOD 2000
    • (2000) SIGMOD
    • Korn, F.1    Muthukrishnan, S.2
  • 16
    • 0003136237 scopus 로고
    • Efficient and effective clustering method for spatial data mining
    • R. Ng and J. W. Han: Efficient and Effective Clustering Method for Spatial Data Mining. VLDB 1994
    • (1994) VLDB
    • Ng, R.1    Han, J.W.2
  • 17
    • 0345359208 scopus 로고    scopus 로고
    • LOCI: Fast outlier detection using the local correlation integral
    • S. Papadimitriou, H. Kitagawa et al. LOCI: Fast Outlier Detection Using the Local Correlation Integral. ICDE 2003
    • (2003) ICDE
    • Papadimitriou, S.1    Kitagawa, H.2
  • 20
    • 0039845384 scopus 로고    scopus 로고
    • Efficient algorithms for mining outliers from large data sets
    • S. Ramaswamy, R. Rastogi, K. Shim: Efficient Algorithms for Mining Outliers from Large Data Sets. SIGMOD 2000
    • (2000) SIGMOD
    • Ramaswamy, S.1    Rastogi, R.2    Shim, K.3
  • 21
    • 33745785908 scopus 로고    scopus 로고
    • Detecting graph-based spatial outliers
    • S. Shekhar, C. T. Lu, P. S. Zhang: Detecting Graph-based Spatial Outliers. KDD 2001
    • (2001) KDD
    • Shekhar, S.1    Lu, C.T.2    Zhang, P.S.3
  • 22
    • 1542326289 scopus 로고    scopus 로고
    • Enhancing effectiveness of outlier detections for low density patterns
    • J. Tang, Z. X. Chen et al.: Enhancing Effectiveness of Outlier Detections for Low Density Patterns. PAKDD 2002
    • (2002) PAKDD
    • Tang, J.1    Chen, Z.X.2
  • 23
    • 33745772641 scopus 로고    scopus 로고
    • Rule-based anomaly pattern detection for detecting disease outbreaks
    • W. K. Wong, A. W. Moore et al.: Rule-Based Anomaly Pattern Detection for Detecting Disease Outbreaks. AAAI 2002
    • (2002) AAAI
    • Wong, W.K.1    Moore, A.W.2
  • 24
    • 3142660421 scopus 로고    scopus 로고
    • Clustering objects on a spatial network
    • M. L. Yiu, N. Mamoulis: Clustering Objects on a Spatial Network. SIGMOD 2004
    • (2004) SIGMOD
    • Yiu, M.L.1    Mamoulis, N.2
  • 25
    • 20844452621 scopus 로고    scopus 로고
    • Aggregate nearest neighbor queries in road networks
    • M. L. Yiu et al.: Aggregate Nearest Neighbor Queries in Road Networks. IEEE Trans. Knowl. Data Eng. 17(6), 2005
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.6
    • Yiu, M.L.1
  • 26
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • T. Zhang et al.: BIRCH: An Efficient Data Clustering Method for Very Large Databases. SIGMOD 1996
    • (1996) SIGMOD
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.