메뉴 건너뛰기




Volumn 25, Issue 2, 2012, Pages 325-357

Fast support vector machines for convolution tree kernels

Author keywords

Kernel methods; Large scale learning; Natural language processing; Tree kernels

Indexed keywords

CURRENT MODELS; CUTTING PLANE ALGORITHMS; DATA SETS; DIRECTED ACYCLIC GRAPHS; DIVERSE DOMAINS; FAST LEARNING; KERNEL METHODS; LARGE SCALE LEARNING; LEARNING FRAMEWORKS; NATURAL LANGUAGE PROCESSING; REAL-WORLD APPLICATION; SAMPLING STRATEGIES; STATE-OF-THE-ART METHODS; STRUCTURED DATA; TRAINING ALGORITHMS; TRAINING EXAMPLE; TREE KERNELS;

EID: 84864558154     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-012-0276-8     Document Type: Conference Paper
Times cited : (14)

References (58)
  • 4
    • 84905707995 scopus 로고    scopus 로고
    • Algorithms for symmetric linear and integer programs
    • Online First. Comments: , 1 figure; sums up and extends results from 0908.3329 and 0908.3331
    • Bšdi R, Herr K, Joswig M (2011) Algorithms for symmetric linear and integer programs. Mathematical programming, series A, Online First. Comments: 21 pp, 1 figure; sums up and extends results from 0908.3329 and 0908.3331
    • (2011) Mathematical Programming, Series A , pp. 21
    • Bšdi, R.1    Herr, K.2    Joswig, M.3
  • 7
    • 85036148712 scopus 로고    scopus 로고
    • A maximum-entropy-inspired parser
    • Charniak E (2000) A maximum-entropy-inspired parser. In: ANLP, pp 132-139
    • (2000) ANLP , pp. 132-139
    • Charniak, E.1
  • 8
    • 5444259929 scopus 로고    scopus 로고
    • Hybridtreeminer: An efficient algorithm for mining frequent rooted trees and free trees using canonical form
    • Chi Y, Yang Y, Muntz RR (2004) Hybridtreeminer: An efficient algorithm for mining frequent rooted trees and free trees using canonical form. In: SSDBM, pp 11-20
    • (2004) SSDBM , pp. 11-20
    • Chi, Y.1    Yang, Y.2    Muntz, R.R.3
  • 9
    • 33646057547 scopus 로고    scopus 로고
    • Newranking algorithms for parsing and tagging: Kernels over discrete structures, and the voted perceptron
    • CollinsM,DuffyN(2002) Newranking algorithms for parsing and tagging: kernels over discrete structures, and the voted perceptron. In: ACL, pp 263-270
    • (2002) ACL , pp. 263-270
    • Collins, M.1    Duffy, N.2
  • 10
    • 84864543152 scopus 로고    scopus 로고
    • A tree-position kernel for document compression
    • Boston
    • Daumé III H, Marcu D (2004) A tree-position kernel for document compression. In: Proceedings of the DUC, Boston
    • (2004) Proceedings of the DUC
    • Daumé III, H.1    Marcu, D.2
  • 11
    • 43749104493 scopus 로고    scopus 로고
    • Report on the xmlmining track at inex 2005 and inex2006: Categorization and clustering of xml documents
    • Denoyer L,Gallinari P (2007) Report on the xmlmining track at INEX 2005 and INEX2006: categorization and clustering of xml documents. SIGIR Forum 41:79-90
    • (2007) SIGIR Forum , vol.41 , pp. 79-90
    • Denoyer, L.1    Gallinari, P.2
  • 12
    • 56449101964 scopus 로고    scopus 로고
    • Optimized cutting plane algorithm for support vector machines
    • Franc V, Sonnenburg S (2008) Optimized cutting plane algorithm for support vector machines. In: ICML, pp 320-327
    • (2008) ICML , pp. 320-327
    • Franc, V.1    Sonnenburg, S.2
  • 14
    • 53049085297 scopus 로고    scopus 로고
    • Semantic role labeling via framenet, verbnet and propbank
    • Sydney, Australia
    • GiugleaAM,MoschittiA(2006) Semantic role labeling via framenet, verbnet and propbank. In: Proceedings of ACL, Sydney, Australia
    • (2006) Proceedings of ACL
    • Giuglea, A.M.1    Moschitti, A.2
  • 16
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale svm learning practical
    • chap 11. MIT Press, Cambridge
    • Joachims T (1999) Making large-scale SVM learning practical. In: Advances in kernel methods-support vector learning, chap 11. MIT Press, Cambridge, pp 169-184
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 18
    • 33749563073 scopus 로고    scopus 로고
    • Training linear svms in linear time
    • Joachims T (2006) Training linear SVMs in linear time. In: KDD
    • (2006) KDD
    • Joachims, T.1
  • 19
    • 68949154453 scopus 로고    scopus 로고
    • Sparse kernel svms via cutting-plane training
    • Joachims T, Yu CNJ (2009) Sparse kernel SVMS via cutting-plane training. Mach Learn 76(2-3):179-193
    • (2009) Mach Learn , vol.76 , Issue.2-3 , pp. 179-193
    • Joachims, T.1    Yu, C.N.J.2
  • 20
    • 84860540911 scopus 로고    scopus 로고
    • Using string-kernels for learning semantic parsers
    • Kate RJ, Mooney RJ (2006) Using string-kernels for learning semantic parsers. In: ACL
    • (2006) ACL
    • Kate, R.J.1    Mooney, R.J.2
  • 23
    • 1542714925 scopus 로고    scopus 로고
    • Mismatch string kernels for discriminative protein classification
    • Leslie C, Eskin E, Cohen A,Weston J, NobleWS (2004) Mismatch string kernels for discriminative protein classification. Bioinformatics 20(4):467-476
    • (2004) Bioinformatics , vol.20 , Issue.4 , pp. 467-476
    • Leslie, C.1    Eskin, E.2    Cohen, A.3    Weston, J.4    Noble, W.S.5
  • 24
    • 34249852033 scopus 로고
    • Building a large annotated corpus of english: The penn treebank
    • Marcus M, Santorini B, Marcinkiewicz M (1993) Building a large annotated corpus of English: The Penn Treebank. Comput Linguist 19(2):313-330
    • (1993) Comput Linguist , vol.19 , Issue.2 , pp. 313-330
    • Marcus, M.1    Santorini, B.2    Marcinkiewicz, M.3
  • 25
    • 79959204960 scopus 로고    scopus 로고
    • Syntactic/semantic structures for textual entailment recognition
    • Mehdad Y, Moschitti A, Zanzotto FM (2010) Syntactic/semantic structures for textual entailment recognition. In: HLT-NAACL, pp 1020-1028
    • (2010) HLT-NAACL , pp. 1020-1028
    • Mehdad, Y.1    Moschitti, A.2    Zanzotto, F.M.3
  • 26
    • 85036466792 scopus 로고    scopus 로고
    • A study on convolution kernel for shallow semantic parsing
    • Barcelona, Spain
    • Moschitti A (2004)A study on convolution kernel for shallow semantic parsing. In: Proceedings of ACL'04. Barcelona, Spain
    • (2004) Proceedings of ACL'04
    • Moschitti, A.1
  • 27
    • 34547975798 scopus 로고    scopus 로고
    • Efficient convolution kernels for dependency and constituent syntactic trees
    • Moschitti A (2006a) Efficient convolution kernels for dependency and constituent syntactic trees. In: Proceedings of ECML
    • (2006) Proceedings of ECML
    • Moschitti, A.1
  • 28
    • 84874714333 scopus 로고    scopus 로고
    • Making tree kernels practical for natural language learning
    • TheAssociation for Computer Linguistics
    • MoschittiA(2006b) Making tree kernels practical for natural language learning. In: EACL. TheAssociation for Computer Linguistics
    • (2006) EACL
    • Moschitti, A.1
  • 29
    • 70349257998 scopus 로고    scopus 로고
    • Kernel methods, syntax and semantics for relational text categorization
    • New York, USA
    • Moschitti A (2008) Kernel methods, syntax and semantics for relational text categorization. In: Proceeding of CIKM '08, New York, USA
    • (2008) Proceeding of CIKM '08
    • Moschitti, A.1
  • 31
  • 32
    • 84878205059 scopus 로고    scopus 로고
    • Joint distant and direct supervision for relation extraction. In: Proceedings of 5th international joint conference on natural language processing
    • Chiang Mai, Thailand
    • Nguyen TVT,MoschittiA(2011) Joint distant and direct supervision for relation extraction. In: Proceedings of 5th international joint conference on natural language processing. Asian Federation of Natural Language Processing, Chiang Mai, Thailand, pp 732-740. http://www.aclweb.org/anthology/I11-1082
    • (2011) Asian Federation of Natural Language Processing , pp. 732-740
    • Nguyen, T.V.T.1    Moschitti, A.2
  • 35
    • 33645983416 scopus 로고    scopus 로고
    • The proposition bank: An annotated corpus of semantic roles
    • Palmer M, Kingsbury P, Gildea D (2005) The proposition bank: An annotated corpus of semantic roles. Comput Linguist 31(1):71-106
    • (2005) Comput Linguist , vol.31 , Issue.1 , pp. 71-106
    • Palmer, M.1    Kingsbury, P.2    Gildea, D.3
  • 38
    • 79959237063 scopus 로고    scopus 로고
    • On reverse feature engineering of syntactic tree kernels. In: Proceedings of the fourteenth conference on computational natural language learning
    • Uppsala, Sweden
    • Pighin D, Moschitti A (2010) On reverse feature engineering of syntactic tree kernels. In: Proceedings of the fourteenth conference on computational natural language learning. Association for Computational Linguistics, Uppsala, Sweden, pp 223-233
    • (2010) Association for Computational Linguistics , pp. 223-233
    • Pighin, D.1    Moschitti, A.2
  • 40
    • 4444273377 scopus 로고    scopus 로고
    • Protein homology detection using string alignment kernels
    • Saigo H, Vert J, Akutsu T, Ueda N (2004) Protein homology detection using string alignment kernels. Bioinformatics 20:1682-1689
    • (2004) Bioinformatics , vol.20 , pp. 1682-1689
    • Saigo, H.1    Vert, J.2    Akutsu, T.3    Ueda, N.4
  • 41
    • 77958058028 scopus 로고    scopus 로고
    • Large-scale support vector learning with structural kernels
    • SeverynA,MoschittiA(2010) Large-scale support vector learning with structural kernels. In:ECML/PKDD (3), pp 229-244
    • (2010) ECML/PKDD , Issue.3 , pp. 229-244
    • Severyn, A.1    Moschitti, A.2
  • 42
    • 84874565859 scopus 로고    scopus 로고
    • Fast support vector machines for structural kernels
    • Severyn A, Moschitti A (2011) Fast support vector machines for structural kernels. In: ECML
    • (2011) ECML
    • Severyn, A.1    Moschitti, A.2
  • 43
    • 2442574772 scopus 로고    scopus 로고
    • Unordered tree mining with applications to phylogeny
    • Shasha D,Wang JTL, Zhang S (2004) Unordered tree mining with applications to phylogeny. In: ICDE, pp 708-719
    • (2004) ICDE , pp. 708-719
    • Shasha, D.1    Wang, J.T.L.2    Zhang, S.3
  • 46
    • 4644354708 scopus 로고    scopus 로고
    • Sparseness of support vector machines
    • Steinwart I (2003) Sparseness of support vector machines. J Mach Learn Res 4:1071-1105
    • (2003) J Mach Learn Res , vol.4 , pp. 1071-1105
    • Steinwart, I.1
  • 47
    • 19544369474 scopus 로고    scopus 로고
    • Dryade: A new approach for discovering closed frequent trees in heterogeneous tree databases
    • Termier A, Rousset MC, Sebag M (2004) Dryade: A new approach for discovering closed frequent trees in heterogeneous tree databases. In: ICDM, pp 543-546
    • (2004) ICDM , pp. 543-546
    • Termier, A.1    Rousset, M.C.2    Sebag, M.3
  • 48
    • 40649095033 scopus 로고    scopus 로고
    • A self-organising map approach for clustering of xml documents
    • IEEE
    • Trentini F, Hagenbuchner M, Sperduti A, Scarselli F (2006) A self-organising map approach for clustering of xml documents. In: IJCNN, pp 1805-1812. IEEE
    • (2006) IJCNN , pp. 1805-1812
    • Trentini, F.1    Hagenbuchner, M.2    Sperduti, A.3    Scarselli, F.4
  • 49
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • Tsochantaridis I, Joachims T, Hofmann T, Altun Y (2005) Large margin methods for structured and interdependent output variables. J Mach Learn Res 6:1453-1484
    • (2005) J Mach Learn Res , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 52
    • 7444249756 scopus 로고    scopus 로고
    • Efficient pattern-growth methods for frequent tree pattern mining
    • Wang C, Hong M, Pei J, Zhou H,WangW, Shi B (2004) Efficient pattern-growth methods for frequent tree pattern mining. In: PAKDD, pp 441-451
    • (2004) PAKDD , pp. 441-451
    • Wang, C.1    Hong, M.2    Pei, J.3    Zhou, H.4    Wang, W.5    Shi, B.6
  • 54
    • 14644411753 scopus 로고    scopus 로고
    • Mining closed and maximal frequent subtrees from databases of labeled rooted trees
    • Xia Y, Yang Y (2005) Mining closed and maximal frequent subtrees from databases of labeled rooted trees. IEEE Trans Knowl Data Eng 17(2):190-202
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , Issue.2 , pp. 190-202
    • Xia, Y.1    Yang, Y.2
  • 55
    • 12244276357 scopus 로고    scopus 로고
    • 2pxminer: An efficient two pass mining of frequent xml query patterns
    • Yang LH, Lee ML, Hsu W, Guo X (2004) 2pxminer: An efficient two pass mining of frequent xml query patterns. In: KDD, pp 731-736
    • (2004) KDD , pp. 731-736
    • Yang, L.H.1    Lee, M.L.2    Hsu, W.3    Guo, X.4
  • 56
    • 65449143358 scopus 로고    scopus 로고
    • Training structural svms with kernels using sampled cuts
    • Yu CNJ, Joachims T (2008) Training structural svms with kernels using sampled cuts. In: KDD, pp 794-802
    • (2008) KDD , pp. 794-802
    • Yu, C.N.J.1    Joachims, T.2
  • 57
    • 33749245586 scopus 로고    scopus 로고
    • Cost-sensitive learning by cost-proportionate example weighting
    • Zadrozny B, Langford J, Abe N (2003) Cost-sensitive learning by cost-proportionate example weighting. In: Proceedings of ICDM
    • (2003) Proceedings of ICDM
    • Zadrozny, B.1    Langford, J.2    Abe, N.3
  • 58
    • 24344486868 scopus 로고    scopus 로고
    • Efficiently mining frequent trees in a forest: Algorithms and applications
    • Zaki MJ (2005) Efficiently mining frequent trees in a forest: Algorithms and applications. IEEE TransKnowl Data Eng 17(8):1021-1035
    • (2005) IEEE TransKnowl Data Eng , vol.17 , Issue.8 , pp. 1021-1035
    • Zaki, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.