메뉴 건너뛰기




Volumn 38, Issue , 2012, Pages 283-295

Efficient hydrological model parameter optimization with Sequential Monte Carlo sampling

Author keywords

Bayesian; Data assimilation; Hydrological models; Monte Carlo; Parameter optimisation; Parameter uncertainty

Indexed keywords

BAYESIAN; DATA ASSIMILATION; HYDROLOGICAL MODELS; MONTE CARLO; PARAMETER OPTIMISATION; PARAMETER UNCERTAINTY;

EID: 84864349544     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.envsoft.2012.07.001     Document Type: Article
Times cited : (40)

References (63)
  • 2
    • 0034989285 scopus 로고    scopus 로고
    • A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling
    • Bates B.C., Campbell E.P. A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resources Research 2001, 37(4):937-947.
    • (2001) Water Resources Research , vol.37 , Issue.4 , pp. 937-947
    • Bates, B.C.1    Campbell, E.P.2
  • 4
    • 72149123038 scopus 로고    scopus 로고
    • Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation
    • Bulygina N., Gupta H. Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation. Water Resources Research 2009, 45.
    • (2009) Water Resources Research , vol.45
    • Bulygina, N.1    Gupta, H.2
  • 5
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixture posterior distributions
    • Celeux G., Hurn M., Robert C.P. Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical Association 2000, 95(451):957-970.
    • (2000) Journal of the American Statistical Association , vol.95 , Issue.451 , pp. 957-970
    • Celeux, G.1    Hurn, M.2    Robert, C.P.3
  • 6
    • 0012338718 scopus 로고    scopus 로고
    • A sequential particle filter method for static models
    • Chopin N. A sequential particle filter method for static models. Biometrika 2002, 89(3):539-552.
    • (2002) Biometrika , vol.89 , Issue.3 , pp. 539-552
    • Chopin, N.1
  • 10
    • 41549124558 scopus 로고    scopus 로고
    • Sequential Monte Carlo for Bayesian computation
    • Oxford University Press, Oxford, J.M. Bernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith, M. West (Eds.)
    • Del Moral P., Doucet A., Jasra A. Sequential Monte Carlo for Bayesian computation. Bayesian Statistics 2007, 115-148. Oxford University Press, Oxford. J.M. Bernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith, M. West (Eds.).
    • (2007) Bayesian Statistics , pp. 115-148
    • Del Moral, P.1    Doucet, A.2    Jasra, A.3
  • 11
    • 79957854749 scopus 로고    scopus 로고
    • Performance and sensitivity analysis of stormwater models using a Bayesian approach and long-term high resolution data
    • Dotto C.B.S., Kleidorfer M., Deletic A., Rauch W., McCarthy D.T., Fletcher T.D. Performance and sensitivity analysis of stormwater models using a Bayesian approach and long-term high resolution data. Environmental Modelling & Software 2011, 26(10):1225-1239.
    • (2011) Environmental Modelling & Software , vol.26 , Issue.10 , pp. 1225-1239
    • Dotto, C.B.S.1    Kleidorfer, M.2    Deletic, A.3    Rauch, W.4    McCarthy, D.T.5    Fletcher, T.D.6
  • 13
    • 79952603857 scopus 로고    scopus 로고
    • Estimation of parameters for microparasite population evolution using approximate Bayesian computation
    • Drovandi C.C., Pettitt A.N. Estimation of parameters for microparasite population evolution using approximate Bayesian computation. Biometrics 2011, 67(1):225-233.
    • (2011) Biometrics , vol.67 , Issue.1 , pp. 225-233
    • Drovandi, C.C.1    Pettitt, A.N.2
  • 14
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan Q.Y., Sorooshian S., Gupta V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research 1992, 28(4):1015-1031.
    • (1992) Water Resources Research , vol.28 , Issue.4 , pp. 1015-1031
    • Duan, Q.Y.1    Sorooshian, S.2    Gupta, V.3
  • 15
    • 84982907230 scopus 로고    scopus 로고
    • Generalised linear mixed model analysis via sequential Monte Carlo sampling
    • Fan Y., Leslie D.S., Wand M.P. Generalised linear mixed model analysis via sequential Monte Carlo sampling. Electronic Journal of Statistics 2008, 2:916-938.
    • (2008) Electronic Journal of Statistics , vol.2 , pp. 916-938
    • Fan, Y.1    Leslie, D.S.2    Wand, M.P.3
  • 16
    • 0029659801 scopus 로고    scopus 로고
    • Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach
    • Freer J., Beven K., Ambroise B. Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resources Research 1996, 32(7):2161-2173.
    • (1996) Water Resources Research , vol.32 , Issue.7 , pp. 2161-2173
    • Freer, J.1    Beven, K.2    Ambroise, B.3
  • 20
    • 0033436531 scopus 로고    scopus 로고
    • Adaptive proposal distribution for random walk Metropolis algorithm
    • Haario H., Saksman E., Tamminen J. Adaptive proposal distribution for random walk Metropolis algorithm. Computational Statistics 1999, 14(3):375-395.
    • (1999) Computational Statistics , vol.14 , Issue.3 , pp. 375-395
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 21
    • 68349099316 scopus 로고    scopus 로고
    • A sequential Bayesian approach for hydrologic model selection and prediction
    • Hsu K.-l., Moradkhani H., Sorooshian S. A sequential Bayesian approach for hydrologic model selection and prediction. Water Resources Research 2009, 45(12):W00B12.
    • (2009) Water Resources Research , vol.45 , Issue.12
    • Hsu, K.-L.1    Moradkhani, H.2    Sorooshian, S.3
  • 22
    • 79958810216 scopus 로고    scopus 로고
    • Data assimilation for real-time estimation of hydraulic states and unmeasured perturbations in a 1D hydrodynamic model
    • Jean-Baptiste N., Malaterre P.-O., Dorée C., Sau J. Data assimilation for real-time estimation of hydraulic states and unmeasured perturbations in a 1D hydrodynamic model. Mathematics and Computers in Simulation 2011, 81(10):2201-2214.
    • (2011) Mathematics and Computers in Simulation , vol.81 , Issue.10 , pp. 2201-2214
    • Jean-Baptiste, N.1    Malaterre, P.-O.2    Dorée, C.3    Sau, J.4
  • 23
    • 79961229131 scopus 로고    scopus 로고
    • Bayesian calibration and uncertainty analysis of hydrological models: a comparison of adaptive metropolis and sequential Monte Carlo samplers
    • Jeremiah E., Sisson S., Marshall L., Mehrotra R., Sharma A. Bayesian calibration and uncertainty analysis of hydrological models: a comparison of adaptive metropolis and sequential Monte Carlo samplers. Water Resources Research 2011, 47(7):W07547.
    • (2011) Water Resources Research , vol.47 , Issue.7
    • Jeremiah, E.1    Sisson, S.2    Marshall, L.3    Mehrotra, R.4    Sharma, A.5
  • 24
    • 77954863677 scopus 로고    scopus 로고
    • Information-driven receptor placement for contaminant source determination
    • Keats A., Yee E., Lien F.S. Information-driven receptor placement for contaminant source determination. Environmental Modelling & Software 2010, 25(9):1000-1013.
    • (2010) Environmental Modelling & Software , vol.25 , Issue.9 , pp. 1000-1013
    • Keats, A.1    Yee, E.2    Lien, F.S.3
  • 25
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics 1996, 5(1):1-25.
    • (1996) Journal of Computational and Graphical Statistics , vol.5 , Issue.1 , pp. 1-25
    • Kitagawa, G.1
  • 26
    • 0031748081 scopus 로고    scopus 로고
    • Assessment of hydrologic parameter uncertainty and the worth of multiresponse data
    • Kuczera G., Mroczkowski M. Assessment of hydrologic parameter uncertainty and the worth of multiresponse data. Water Resources Research 1998, 34(6):1481-1489.
    • (1998) Water Resources Research , vol.34 , Issue.6 , pp. 1481-1489
    • Kuczera, G.1    Mroczkowski, M.2
  • 27
    • 0032214428 scopus 로고    scopus 로고
    • Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the metropolis algorithm
    • Kuczera G., Parent E. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the metropolis algorithm. Journal of Hydrology 1998, 211(1-4):69-85.
    • (1998) Journal of Hydrology , vol.211 , Issue.1-4 , pp. 69-85
    • Kuczera, G.1    Parent, E.2
  • 28
    • 0020969493 scopus 로고
    • Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty
    • Kuczera G. Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty. Water Resources Research 1983, 19(5):1151-1162.
    • (1983) Water Resources Research , vol.19 , Issue.5 , pp. 1151-1162
    • Kuczera, G.1
  • 33
    • 1642295818 scopus 로고    scopus 로고
    • A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling
    • Marshall L., Nott D., Sharma A. A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resources Research 2004, 40(2).
    • (2004) Water Resources Research , vol.40 , Issue.2
    • Marshall, L.1    Nott, D.2    Sharma, A.3
  • 34
    • 33846370929 scopus 로고    scopus 로고
    • Modeling the catchment via mixtures: issues of model specification and validation
    • Marshall L., Sharma A., Nott D. Modeling the catchment via mixtures: issues of model specification and validation. Water Resources Research 2006, 42(11).
    • (2006) Water Resources Research , vol.42 , Issue.11
    • Marshall, L.1    Sharma, A.2    Nott, D.3
  • 35
    • 34047147929 scopus 로고    scopus 로고
    • Towards dynamic catchment modelling: a Bayesian hierarchical mixtures of experts framework
    • Marshall L., Nott D., Sharma A. Towards dynamic catchment modelling: a Bayesian hierarchical mixtures of experts framework. Hydrological Processes 2007, 21(7):847-861.
    • (2007) Hydrological Processes , vol.21 , Issue.7 , pp. 847-861
    • Marshall, L.1    Nott, D.2    Sharma, A.3
  • 36
    • 67649854447 scopus 로고    scopus 로고
    • Combining site and regional flood information using a Bayesian Monte Carlo approach
    • Micevski T., Kuczera G. Combining site and regional flood information using a Bayesian Monte Carlo approach. Water Resources Research 2009, 45.
    • (2009) Water Resources Research , vol.45
    • Micevski, T.1    Kuczera, G.2
  • 37
    • 79951977683 scopus 로고    scopus 로고
    • Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter
    • Montzka C., Moradkhani H., Weihermüller L., Franssen H.-J.H., Canty M., Vereecken H. Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter. Journal of Hydrology 2011, 399(3-4):410-421.
    • (2011) Journal of Hydrology , vol.399 , Issue.3-4 , pp. 410-421
    • Montzka, C.1    Moradkhani, H.2    Weihermüller, L.3    Franssen, H.-J.H.4    Canty, M.5    Vereecken, H.6
  • 39
    • 78751628207 scopus 로고    scopus 로고
    • General review of rainfall-runoff modeling: model calibration, data assimilation, and uncertainty analysis
    • Springer-Verlag Berlin, Berlin, S. Sorooshian, K.L. Hsu, E. Coppola, B. Tomassetti, M. Verdecchia, G. Visconti (Eds.)
    • Moradkhani H., Sorooshian S. General review of rainfall-runoff modeling: model calibration, data assimilation, and uncertainty analysis. Hydrological Modelling and the Water Cycle: Coupling the Atmospheric and Hydrological Models 2008, 1-24. Springer-Verlag Berlin, Berlin. S. Sorooshian, K.L. Hsu, E. Coppola, B. Tomassetti, M. Verdecchia, G. Visconti (Eds.).
    • (2008) Hydrological Modelling and the Water Cycle: Coupling the Atmospheric and Hydrological Models , pp. 1-24
    • Moradkhani, H.1    Sorooshian, S.2
  • 40
    • 20844449766 scopus 로고    scopus 로고
    • Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter
    • Moradkhani H., Hsu K.L., Gupta H., Sorooshian S. Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter. Water Resources Research 2005, 41(5).
    • (2005) Water Resources Research , vol.41 , Issue.5
    • Moradkhani, H.1    Hsu, K.L.2    Gupta, H.3    Sorooshian, S.4
  • 41
    • 18844381609 scopus 로고    scopus 로고
    • Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model
    • Muleta M.K., Nicklow J.W. Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. Journal of Hydrology 2005, 306(1-4):127-145.
    • (2005) Journal of Hydrology , vol.306 , Issue.1-4 , pp. 127-145
    • Muleta, M.K.1    Nicklow, J.W.2
  • 42
    • 79952184589 scopus 로고    scopus 로고
    • Particle Filter-based assimilation algorithms for improved estimation of root-zone soil moisture under dynamic vegetation conditions
    • Nagarajan K., Judge J., Graham W.D., Monsivais-Huertero A. Particle Filter-based assimilation algorithms for improved estimation of root-zone soil moisture under dynamic vegetation conditions. Advances in Water Resources 2011, 34(4):433-447.
    • (2011) Advances in Water Resources , vol.34 , Issue.4 , pp. 433-447
    • Nagarajan, K.1    Judge, J.2    Graham, W.D.3    Monsivais-Huertero, A.4
  • 43
    • 84865433109 scopus 로고    scopus 로고
    • Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization
    • Noh S.J., Tachikawa Y., Shiiba M., Kim S. Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization. Hydrology and Earth System Sciences Discussion 2011, 8(2):3383-3420.
    • (2011) Hydrology and Earth System Sciences Discussion , vol.8 , Issue.2 , pp. 3383-3420
    • Noh, S.J.1    Tachikawa, Y.2    Shiiba, M.3    Kim, S.4
  • 44
    • 2642573771 scopus 로고    scopus 로고
    • Probabilistic sensitivity analysis of complex models: a Bayesian approach
    • Oakley J.E., O'Hagan A. Probabilistic sensitivity analysis of complex models: a Bayesian approach. Journal of the Royal Statistical Society Series B 2004, 66(3):751-769.
    • (2004) Journal of the Royal Statistical Society Series B , vol.66 , Issue.3 , pp. 751-769
    • Oakley, J.E.1    O'Hagan, A.2
  • 45
    • 78649960487 scopus 로고    scopus 로고
    • Disentangling uncertainties in distributed hydrological modeling using multiplicative error models and sequential data assimilation
    • Salamon P., Feyen L. Disentangling uncertainties in distributed hydrological modeling using multiplicative error models and sequential data assimilation. Water Resources Research 2010, 46(12):W12501.
    • (2010) Water Resources Research , vol.46 , Issue.12
    • Salamon, P.1    Feyen, L.2
  • 46
    • 0036879790 scopus 로고    scopus 로고
    • On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration
    • Seibert J., McDonnell J.J. On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration. Water Resources Research 2002, 38(11):1241.
    • (2002) Water Resources Research , vol.38 , Issue.11 , pp. 1241
    • Seibert, J.1    McDonnell, J.J.2
  • 49
    • 68949104874 scopus 로고    scopus 로고
    • Bayesian methods in hydrologic modeling: a study of recent advancements in Markov chain Monte Carlo techniques
    • Smith T., Marshall L.A. Bayesian methods in hydrologic modeling: a study of recent advancements in Markov chain Monte Carlo techniques. Water Resources Research 2008, 44.
    • (2008) Water Resources Research , vol.44
    • Smith, T.1    Marshall, L.A.2
  • 50
    • 76749111524 scopus 로고    scopus 로고
    • Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework
    • Smith T., Marshall L.A. Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework. Environmental Modelling & Software 2010, 25(6):691-701.
    • (2010) Environmental Modelling & Software , vol.25 , Issue.6 , pp. 691-701
    • Smith, T.1    Marshall, L.A.2
  • 51
    • 39749173002 scopus 로고    scopus 로고
    • Detection of structural inadequacy in process-based hydrological models: a particle-filtering approach
    • Smith P.J., Beven K.J., Tawn J.A. Detection of structural inadequacy in process-based hydrological models: a particle-filtering approach. Water Resources Research 2008, 44(1).
    • (2008) Water Resources Research , vol.44 , Issue.1
    • Smith, P.J.1    Beven, K.J.2    Tawn, J.A.3
  • 52
    • 78650986160 scopus 로고    scopus 로고
    • Development of a formal likelihood function for improved Bayesian inference of ephemeral catchments
    • Smith T., Sharma A., Marshall L., Mehrotra R., Sisson S. Development of a formal likelihood function for improved Bayesian inference of ephemeral catchments. Water Resources Research 2010, 46(12):W12551.
    • (2010) Water Resources Research , vol.46 , Issue.12
    • Smith, T.1    Sharma, A.2    Marshall, L.3    Mehrotra, R.4    Sisson, S.5
  • 54
    • 0021034448 scopus 로고
    • Automatic calibration of conceptual rainfall-runoff models - the question of parameter observability and uniqueness
    • Sorooshian S., Gupta V.K. Automatic calibration of conceptual rainfall-runoff models - the question of parameter observability and uniqueness. Water Resources Research 1983, 19(1):260-268.
    • (1983) Water Resources Research , vol.19 , Issue.1 , pp. 260-268
    • Sorooshian, S.1    Gupta, V.K.2
  • 55
    • 44649179254 scopus 로고    scopus 로고
    • Modified particle filter methods for assimilating Lagrangian data into a point-vortex model
    • Spiller E.T., Budhiraja A., Ide K., Jones C.K.R.T. Modified particle filter methods for assimilating Lagrangian data into a point-vortex model. Physica D: Nonlinear Phenomena 2008, 237(10-12):1498-1506.
    • (2008) Physica D: Nonlinear Phenomena , vol.237 , Issue.10-12 , pp. 1498-1506
    • Spiller, E.T.1    Budhiraja, A.2    Ide, K.3    Jones, C.K.R.T.4
  • 57
    • 69849096009 scopus 로고    scopus 로고
    • Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis
    • Thyer M., Renard B., Kavetski D., Kuczera G., Franks S.W., Srikanthan S. Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis. Water Resources Research 2009, 45.
    • (2009) Water Resources Research , vol.45
    • Thyer, M.1    Renard, B.2    Kavetski, D.3    Kuczera, G.4    Franks, S.W.5    Srikanthan, S.6
  • 58
    • 74949130817 scopus 로고    scopus 로고
    • Particle filtering in geophysical systems
    • van Leeuwen P.J. Particle filtering in geophysical systems. Monthly Weather Review 2009, 137(12):4089-4114.
    • (2009) Monthly Weather Review , vol.137 , Issue.12 , pp. 4089-4114
    • van Leeuwen, P.J.1
  • 59
    • 33847624077 scopus 로고    scopus 로고
    • Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging
    • Vrugt J.A., Robinson B.A. Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging. Water Resources Research 2007, 43(1).
    • (2007) Water Resources Research , vol.43 , Issue.1
    • Vrugt, J.A.1    Robinson, B.A.2
  • 60
    • 1542757127 scopus 로고    scopus 로고
    • A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters
    • Vrugt J.A., Gupta H.V., Bouten W., Sorooshian S. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research 2003, 39(8).
    • (2003) Water Resources Research , vol.39 , Issue.8
    • Vrugt, J.A.1    Gupta, H.V.2    Bouten, W.3    Sorooshian, S.4
  • 62
    • 0037442971 scopus 로고    scopus 로고
    • Towards reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability analysis
    • Wagener T., McIntyre N., Lees M.J., Wheater H.S., Gupta H.V. Towards reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability analysis. Hydrological Processes 2003, 17(2):455-476.
    • (2003) Hydrological Processes , vol.17 , Issue.2 , pp. 455-476
    • Wagener, T.1    McIntyre, N.2    Lees, M.J.3    Wheater, H.S.4    Gupta, H.V.5
  • 63
    • 33750368306 scopus 로고    scopus 로고
    • Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models
    • Weerts A.H., El Serafy G.Y.H. Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models. Water Resources Research 2006, 42(9).
    • (2006) Water Resources Research , vol.42 , Issue.9
    • Weerts, A.H.1    El Serafy, G.Y.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.