메뉴 건너뛰기




Volumn 42, Issue 11, 2006, Pages

Modeling the catchment via mixtures: Issues of model specification and validation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; ERROR ANALYSIS; MATHEMATICAL MODELS; RAIN; RUNOFF;

EID: 33846370929     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2005WR004613     Document Type: Article
Times cited : (61)

References (31)
  • 1
    • 0037004058 scopus 로고    scopus 로고
    • Climate and landscape controls on water balance model complexity over changing time-scales
    • doi:10.1029/2002WR001487
    • Atkinson, S. E., R. A. Woods, and M. Sivapalan (2002), Climate and landscape controls on water balance model complexity over changing time-scales, Water Resour. Res., 38(12), 1314, doi:10.1029/2002WR001487.
    • (2002) Water Resour. Res , vol.38 , Issue.12 , pp. 1314
    • Atkinson, S.E.1    Woods, R.A.2    Sivapalan, M.3
  • 2
    • 0034989285 scopus 로고    scopus 로고
    • A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling
    • Bates, B. C., and E. Campbell (2001). A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling, Water Resour. Res., 37, 937-947.
    • (2001) Water Resour. Res , vol.37 , pp. 937-947
    • Bates, B.C.1    Campbell, E.2
  • 4
    • 0034508765 scopus 로고    scopus 로고
    • Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods
    • Boyle, D. P., H. Gupta, and S. Sorooshian (2000), Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods, Water Resour. Res., 36, 3663-3674.
    • (2000) Water Resour. Res , vol.36 , pp. 3663-3674
    • Boyle, D.P.1    Gupta, H.2    Sorooshian, S.3
  • 5
    • 45249128876 scopus 로고
    • Combining forecasts: A review and annotated bibliography
    • Clemen, R. T. (1989), Combining forecasts: A review and annotated bibliography, Int. Forecasting, J., 5, 559-583.
    • (1989) Int. Forecasting, J , vol.5 , pp. 559-583
    • Clemen, R.T.1
  • 6
    • 18544362809 scopus 로고    scopus 로고
    • The rationale behind the success of multimodel ensembles in seasonal forecasting: II. Calibration and combination
    • Doblas-Reyes, F. J., et al. (2005), The rationale behind the success of multimodel ensembles in seasonal forecasting: II. Calibration and combination, Tellus. Ser. A, 57, 234-252.
    • (2005) Tellus. Ser. A , vol.57 , pp. 234-252
    • Doblas-Reyes, F.J.1
  • 7
    • 17944384918 scopus 로고    scopus 로고
    • Climate, soil and vegetation controls upon the variability of water balance in temperate and semiarid landscapes: Downward approach to water balance analysis
    • doi:10.1029/2001WR000328
    • Farmer, D., M. Sivapalan, and C. Jothityangkoon (2003), Climate, soil and vegetation controls upon the variability of water balance in temperate and semiarid landscapes: Downward approach to water balance analysis, Water Resour. Res., 39(2), 1035, doi:10.1029/2001WR000328.
    • (2003) Water Resour. Res , vol.39 , Issue.2 , pp. 1035
    • Farmer, D.1    Sivapalan, M.2    Jothityangkoon, C.3
  • 8
    • 0009129790 scopus 로고    scopus 로고
    • Fritsch, J., et al. (1997), Adaptively growing hierarchical mixtures of experts, in Advances in Neural Information Processing Systems, 9, edited by M. I. Mozer et al., MIT Press, Cambridge, Mass.
    • Fritsch, J., et al. (1997), Adaptively growing hierarchical mixtures of experts, in Advances in Neural Information Processing Systems, vol. 9, edited by M. I. Mozer et al., MIT Press, Cambridge, Mass.
  • 9
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., and D. B. Rubin (1992), Inference from iterative simulation using multiple sequences, Stat. Sci., 7, 457-511.
    • (1992) Stat. Sci , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 10
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Geman, S., and D. Geman (1984), Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Machine Intell., 6, 721-741.
    • (1984) IEEE Trans. Pattern Anal. Machine Intell , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 11
    • 4143139874 scopus 로고    scopus 로고
    • Characterising streamflow simulation uncertainty through multimodel ensembles
    • Georgakakos, K. P., et al. (2004), Characterising streamflow simulation uncertainty through multimodel ensembles, J. Hydrol., 298, 222-241.
    • (2004) J. Hydrol , vol.298 , pp. 222-241
    • Georgakakos, K.P.1
  • 12
    • 0031922634 scopus 로고    scopus 로고
    • Toward improvement of hydrologic models: Multiple and noncommensurable measures of information
    • Gupta, V. K., et al. (1998). Toward improvement of hydrologic models: Multiple and noncommensurable measures of information, Water Resour. Res., 34, 751-763.
    • (1998) Water Resour. Res , vol.34 , pp. 751-763
    • Gupta, V.K.1
  • 13
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario, H., et al. (2001). An adaptive Metropolis algorithm, Bernoulli, 7, 223-242.
    • (2001) Bernoulli , vol.7 , pp. 223-242
    • Haario, H.1
  • 14
    • 18544371178 scopus 로고    scopus 로고
    • The rationale behind the success of multi-model ensembles in seasonal forecasting: I. Basic concept
    • Hagedorn, R., et al. (2005), The rationale behind the success of multi-model ensembles in seasonal forecasting: I. Basic concept, Tellus. Ser. A, 57, 219-233.
    • (2005) Tellus. Ser. A , vol.57 , pp. 219-233
    • Hagedorn, R.1
  • 16
    • 0031105908 scopus 로고    scopus 로고
    • A Bayesian approach to model selection in hierarchical mixtures-of-experts architectures
    • Jacobs, R. A., et al. (1997), A Bayesian approach to model selection in hierarchical mixtures-of-experts architectures, Neural Networks, 10, 231-241.
    • (1997) Neural Networks , vol.10 , pp. 231-241
    • Jacobs, R.A.1
  • 17
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • Jordan, M. I., and R. A. Jacobs (1994), Hierarchical mixtures of experts and the EM algorithm, Neural Comput., 6, 181-214.
    • (1994) Neural Comput , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 18
    • 1642295818 scopus 로고    scopus 로고
    • A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling
    • doi:10.1029/2003WR002378
    • Marshall, L., D. Notts, and A. Sharma (2004), A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling, Water Resour. Res., 40, W0250I, doi:10.1029/2003WR002378.
    • (2004) Water Resour. Res , vol.40
    • Marshall, L.1    Notts, D.2    Sharma, A.3
  • 19
    • 28244439991 scopus 로고    scopus 로고
    • Hydrological model selection: A Bayesian alternative
    • doi:10.1029/2004WR003719
    • Marshall, L., D. Nott, and A. Sharma (2005), Hydrological model selection: A Bayesian alternative, Water Resour. Res., 41, W10422, doi:10.1029/2004WR003719.
    • (2005) Water Resour. Res , vol.41
    • Marshall, L.1    Nott, D.2    Sharma, A.3
  • 20
    • 33846374235 scopus 로고    scopus 로고
    • Towards dynamic catchment modelling: A Bayesian hierarchical mixtures of experts framework
    • in press
    • Marshall, L., et al. (2006), Towards dynamic catchment modelling: A Bayesian hierarchical mixtures of experts framework, Hydrol. Processes, in press.
    • (2006) Hydrol. Processes
    • Marshall, L.1
  • 21
    • 5744249209 scopus 로고
    • Equations of state calculations by fast computing machines
    • Metropolis, N., et al. (1953), Equations of state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1092.
    • (1953) J. Chem. Phys , vol.21 , pp. 1087-1092
    • Metropolis, N.1
  • 22
    • 0348225037 scopus 로고    scopus 로고
    • Maximum likelihood Bayesian averaging of uncertain model predictions
    • Neuman, S. P. (2003), Maximum likelihood Bayesian averaging of uncertain model predictions, Stochast. Environ. Res. Risk Assess., 17, 291-305.
    • (2003) Stochast. Environ. Res. Risk Assess , vol.17 , pp. 291-305
    • Neuman, S.P.1
  • 23
    • 0030327271 scopus 로고    scopus 로고
    • Bayesian inference in mixtures-of-experts and hierarchical mixtures-of-experts models with an application to speech recognition
    • Peng, F., et al. (1996). Bayesian inference in mixtures-of-experts and hierarchical mixtures-of-experts models with an application to speech recognition, J. Am. Stat. Assoc., 91, 953-960.
    • (1996) J. Am. Stat. Assoc , vol.91 , pp. 953-960
    • Peng, F.1
  • 24
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978), Estimating the dimension of a model, Ann. Stat., 6, 461-464.
    • (1978) Ann. Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 25
    • 0031259688 scopus 로고    scopus 로고
    • Methods for combining the outputs of different rainfall-runoff models
    • Shamseldin, A. Y., et al. (1997), Methods for combining the outputs of different rainfall-runoff models, J. Hydrol., 197, 203-229.
    • (1997) J. Hydrol , vol.197 , pp. 203-229
    • Shamseldin, A.Y.1
  • 26
    • 0019727059 scopus 로고
    • Parameter estimation of rainfall-runoff models with heteroscedastic streamflow errors-The noninformative data case
    • Sorooshian, S. (1981), Parameter estimation of rainfall-runoff models with heteroscedastic streamflow errors-The noninformative data case, J. Hydrol., 52, 127-138.
    • (1981) J. Hydrol , vol.52 , pp. 127-138
    • Sorooshian, S.1
  • 27
    • 0019227508 scopus 로고
    • Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases
    • Sorooshian, S., and J. A. Dracup (1980), Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases, Water Resour. Res., 16, 430-442.
    • (1980) Water Resour. Res , vol.16 , pp. 430-442
    • Sorooshian, S.1    Dracup, J.A.2
  • 28
    • 0037442971 scopus 로고    scopus 로고
    • Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis
    • Wagener, T., et al. (2003), Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis, Hydrol. Processes, 17, 455-476.
    • (2003) Hydrol. Processes , vol.17 , pp. 455-476
    • Wagener, T.1
  • 29
    • 85156220253 scopus 로고    scopus 로고
    • Constructive algorithms for hierarchical mixtures of experts
    • edited by D. S. Touretzky et al, pp, MIT Press, Cambridge, Mass
    • Waterhouse, S. R., and A. J. Robinson (1996), Constructive algorithms for hierarchical mixtures of experts, in Advances in Neural Information Processing Systems, edited by D. S. Touretzky et al., pp. 584-590, MIT Press, Cambridge, Mass.
    • (1996) Advances in Neural Information Processing Systems , pp. 584-590
    • Waterhouse, S.R.1    Robinson, A.J.2
  • 30
    • 0035340544 scopus 로고    scopus 로고
    • A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system
    • Xiong, L., et al. (2001), A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system, J. Hydrol., 245, 196-217.
    • (2001) J. Hydrol , vol.245 , pp. 196-217
    • Xiong, L.1
  • 31
    • 0032579570 scopus 로고    scopus 로고
    • Multi-objective global optimization for hydrologic models
    • Yapo, P., et al. (1998), Multi-objective global optimization for hydrologic models, J. Hydrol., 204, 83-97.
    • (1998) J. Hydrol , vol.204 , pp. 83-97
    • Yapo, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.