메뉴 건너뛰기




Volumn 45, Issue 12, 2012, Pages 4451-4465

A noise-detection based AdaBoost algorithm for mislabeled data

Author keywords

AdaBoost; EM; Ensemble learning; k NN; Pattern recognition

Indexed keywords

ADABOOST ALGORITHM; BENCHMARK DATA; BOOSTING APPROACH; EM; ENSEMBLE LEARNING; EVALUATION CRITERIA; EXPECTATION MAXIMIZATION; K-NEAREST NEIGHBORS; K-NN; LOSS FUNCTIONS; MISLABELED DATA; NOISE SENSITIVITY; NOISY DATA; OVERFITTING; TRAINING ERRORS; WEIGHT DISTRIBUTIONS;

EID: 84864290253     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2012.05.002     Document Type: Article
Times cited : (113)

References (41)
  • 1
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: ICML, 1996, pp. 148-156.
    • (1996) ICML , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 3
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • F. Yoav, E. Robert A decision-theoretic generalization of on-line learning and an application to boosting Journal of Computer and System Sciences 55 1 1997 119 139
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Yoav, F.1    Robert, E.2
  • 4
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Y. Sun, M. Kamel, A. Wong, Y. Wang Cost-sensitive boosting for classification of imbalanced data Pattern Recognition 40 12 2007 3358 3378
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.2    Wong, A.3    Wang, Y.4
  • 9
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • ISSN 0885-6125
    • R. Schapire The strength of weak learnability Machine Learning 5 2 1990 197 227 ISSN 0885-6125
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 11
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, randomization
    • ISSN 0885-6125
    • T. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, randomization Machine Learning 40 2 2000 139 157 ISSN 0885-6125
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.1
  • 14
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Hastie, R. Tibshirani Additive logistic regression: a statistical view of boosting The Annals of Statistics 28 2 2000 337 374
    • (2000) The Annals of Statistics , vol.28 , Issue.2 , pp. 337-374
    • Hastie, J.1    Tibshirani, R.2
  • 15
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. Schapire, Y. Singer Improved boosting algorithms using confidence-rated predictions Machine Learning 37 3 1999 297 336
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.1    Singer, Y.2
  • 19
    • 0005271994 scopus 로고    scopus 로고
    • MadaBoost: A modification of adaBoost
    • C. Domingo, O. Watanabe, MadaBoost: a modification of adaBoost, in: COLT, 2000, pp. 180-189.
    • (2000) COLT , pp. 180-189
    • Domingo, C.1    Watanabe, O.2
  • 21
    • 33748611698 scopus 로고    scopus 로고
    • AveBoost2: Boosting for noisy data
    • N.C. Oza, AveBoost2: boosting for noisy data, in: Multiple Classifier Systems, 2004, pp. 31-40.
    • (2004) Multiple Classifier Systems , pp. 31-40
    • Oza, N.C.1
  • 22
    • 67349098005 scopus 로고    scopus 로고
    • Supervised projection approach for boosting classifiers
    • N. García-Pedrajas Supervised projection approach for boosting classifiers Pattern Recognition 42 9 2009 1742 1760
    • (2009) Pattern Recognition , vol.42 , Issue.9 , pp. 1742-1760
    • García-Pedrajas, N.1
  • 23
    • 77956614386 scopus 로고    scopus 로고
    • Constructing ensembles of classifiers using supervised projection methods based on misclassified instances
    • N. García-Pedrajas, C. García-Osorio Constructing ensembles of classifiers using supervised projection methods based on misclassified instances Expert Systems with Applications 38 1 2011 343 359
    • (2011) Expert Systems with Applications , vol.38 , Issue.1 , pp. 343-359
    • García-Pedrajas, N.1    García-Osorio, C.2
  • 24
    • 78649915712 scopus 로고    scopus 로고
    • Edited adaBoost by weighted kNN
    • Y. Gao, F. Gao Edited adaBoost by weighted kNN Neurocomputing 73 16-18 2010 3079 3088
    • (2010) Neurocomputing , vol.73 , Issue.1618 , pp. 3079-3088
    • Gao, Y.1    Gao, F.2
  • 25
    • 67649697616 scopus 로고    scopus 로고
    • Class noise mitigation through instance weighting
    • U. Rebbapragada, C. Brodley Class noise mitigation through instance weighting Machine Learning: ECML 2007 2007 708 715
    • (2007) Machine Learning: ECML , vol.2007 , pp. 708-715
    • Rebbapragada, U.1    Brodley, C.2
  • 27
    • 70349327713 scopus 로고    scopus 로고
    • Comparison of bagging and boosting algorithms on sample and feature weighting
    • S. Shirai, M. Kudo, A. Nakamura Comparison of bagging and boosting algorithms on sample and feature weighting Multiple Classifier Systems 2009 22 31
    • (2009) Multiple Classifier Systems , pp. 22-31
    • Shirai, S.1    Kudo, M.2    Nakamura, A.3
  • 29
    • 78049529008 scopus 로고    scopus 로고
    • Reduced reward-punishment editing for building ensembles of classifiers
    • L. Nanni, A. Franco Reduced reward-punishment editing for building ensembles of classifiers Expert Systems with Applications 38 3 2011 2395 2400
    • (2011) Expert Systems with Applications , vol.38 , Issue.3 , pp. 2395-2400
    • Nanni, L.1    Franco, A.2
  • 30
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, adaBoost and Bregman distances
    • M. Collins, R. Schapire, Y. Singer Logistic regression, adaBoost and Bregman distances Machine Learning 48 1 2002 253 285
    • (2002) Machine Learning , vol.48 , Issue.1 , pp. 253-285
    • Collins, M.1    Schapire, R.2    Singer, Y.3
  • 31
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • ISSN 0090-5364
    • R. Schapire, Y. Freund, P. Bartlett, W. Lee Boosting the margin: a new explanation for the effectiveness of voting methods The Annals of Statistics 26 5 1998 1651 1686 ISSN 0090-5364
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.1    Freund, Y.2    Bartlett, P.3    Lee, W.4
  • 34
    • 76549131104 scopus 로고    scopus 로고
    • Graphics and Media Laboratory, Computer Science Department, Moscow State University, Moscow, Russian Federation
    • A. Vezhnevets, Gml adaboost matlab toolbox, Technique Manual, Graphics and Media Laboratory, Computer Science Department, Moscow State University, Moscow, Russian Federation.
    • Gml Adaboost Matlab Toolbox, Technique Manual
    • Vezhnevets, A.1
  • 35
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G. Huang, Q. Zhu, C. Siew Extreme learning machine: theory and applications Neurocomputing 70 1-3 2006 489 501
    • (2006) Neurocomputing , vol.70 , Issue.13 , pp. 489-501
    • Huang, G.1    Zhu, Q.2    Siew, C.3
  • 38
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets The Journal of Machine Learning Research 7 2006 1 30
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 39
    • 60849105643 scopus 로고    scopus 로고
    • Constructing ensembles of classifiers by means of weighted instance selection
    • ISSN 1045-9227
    • N. Garcia-Pedrajas Constructing ensembles of classifiers by means of weighted instance selection IEEE Transactions on Neural Networks 20 2 2009 258 277 ISSN 1045-9227
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.2 , pp. 258-277
    • Garcia-Pedrajas, N.1
  • 40
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
    • M. Galar, A. Fernández, E.B. Tartas, H.B. Sola, F. Herrera An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes Pattern Recognition 44 8 2011 1761 1776
    • (2011) Pattern Recognition , vol.44 , Issue.8 , pp. 1761-1776
    • Galar, M.1    Fernández, A.2    Tartas, E.B.3    Sola, H.B.4    Herrera, F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.