-
1
-
-
84898949402
-
Sparseness of support vector machines - Some asymptotically sharp bounds
-
I. Steinwart Sparseness of support vector machines - some asymptotically sharp bounds Neural Information Processing Systems 16 2004 1069 1076
-
(2004)
Neural Information Processing Systems
, vol.16
, pp. 1069-1076
-
-
Steinwart, I.1
-
3
-
-
84898957872
-
Improving the accuracy and speed of support vector learning machines
-
MIT Press, Cambridge, MA
-
C.J.C. Burges, B. Schölkopf, Improving the accuracy and speed of support vector learning machines, in: Advances in Neural Information Processing Systems, vol. 9, MIT Press, Cambridge, MA, 1997, pp. 375-381.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 375-381
-
-
Burges, C.J.C.1
Schölkopf, B.2
-
5
-
-
0001562735
-
Reducing the run-time complexity in support vector machines
-
MIT Press, Cambridge, MA, USA
-
E.E. Osuna, F. Girosi, Reducing the run-time complexity in support vector machines, in: Advances in Kernel Methods, MIT Press, Cambridge, MA, USA, 1999, pp. 271-283.
-
(1999)
Advances in Kernel Methods
, pp. 271-283
-
-
Osuna, E.E.1
Girosi, F.2
-
6
-
-
31844432832
-
Building sparse large margin classifiers
-
M. Wu, B. Schölkopf, G.H. Bakir, Building sparse large margin classifiers, in: ICML '05: Proceedings of the 22nd International Conference on Machine Learning, vol. 119, 2005, pp. 996-1003.
-
(2005)
ICML '05: Proceedings of the 22nd International Conference on Machine Learning
, vol.119
, pp. 996-1003
-
-
Wu, M.1
Schölkopf, B.2
Bakir, G.H.3
-
7
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
R.E. Schapire, Y. Singer Improved boosting algorithms using confidence-rated predictions Machine Learning 37 3 1999 297 336
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
8
-
-
0030211964
-
Bagging predictors
-
L. Breiman Bagging predictors Machine Learning 24 2 1996 123 140
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
9
-
-
0036583160
-
A parallel mixture of SVMs for very large scale problems
-
R. Collobert, S. Bengio, Y. Bengio A parallel mixture of SVMs for very large scale problems Neural Computation 14 5 2002 1105 1114
-
(2002)
Neural Computation
, vol.14
, Issue.5
, pp. 1105-1114
-
-
Collobert, R.1
Bengio, S.2
Bengio, Y.3
-
10
-
-
84898956286
-
Parallel support vector machines: The cascade SVM
-
MIT Press
-
H.P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, V. Vapnik, Parallel support vector machines: the cascade SVM, in: Advances in Neural Information Processing Systems, MIT Press, 2005, pp. 521-528.
-
(2005)
Advances in Neural Information Processing Systems
, pp. 521-528
-
-
Graf, H.P.1
Cosatto, E.2
Bottou, L.3
Durdanovic, I.4
Vapnik, V.5
-
13
-
-
34547964973
-
Pegasos: Primal estimated sub-gradient solver for SVM
-
Y. Singer, N. Srebro, Pegasos: primal estimated sub-gradient solver for SVM, in: ICML, 2007, pp. 807-814.
-
(2007)
ICML
, pp. 807-814
-
-
Singer, Y.1
Srebro, N.2
-
15
-
-
77953214508
-
Hierarchical gaussianization for image classification
-
IEEE
-
X. Zhou, N. Cui, Z. Li, F. Liang, T.S. Huang, Hierarchical gaussianization for image classification, in: ICCV, IEEE, 2009, pp. 1971-1977.
-
(2009)
ICCV
, pp. 1971-1977
-
-
Zhou, X.1
Cui, N.2
Li, Z.3
Liang, F.4
Huang, T.S.5
-
16
-
-
84863401481
-
Non-linear learning using local coordinate coding
-
K. Yu, T. Zhang, Y. Gong, Non-linear learning using local coordinate coding, in: Advances in Neural Information Processing Systems, vol. 22, 2009, pp. 2223-2231.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 2223-2231
-
-
Yu, K.1
Zhang, T.2
Gong, Y.3
-
21
-
-
34147120123
-
Fast support vector machine classification using linear SVMs
-
IEEE Computer Society
-
K.Z. Arreola, J. Fehr, H. Burkhardt, Fast support vector machine classification using linear SVMs, in: ICPR (3), IEEE Computer Society, 2006, pp. 366-369.
-
(2006)
ICPR
, Issue.3
, pp. 366-369
-
-
Arreola, K.Z.1
Fehr, J.2
Burkhardt, H.3
-
22
-
-
4544380243
-
Generalization error bounds for threshold decision lists
-
M. Anthony Generalization error bounds for threshold decision lists Journal of Machine Learning Research 5 2004 189 217
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 189-217
-
-
Anthony, M.1
-
23
-
-
0024627518
-
Inferring decision trees using the minimum description length principle
-
J.R. Quinlan, R.L. Rivest Inferring decision trees using the minimum description length principle Information and Computation 80 3 1989 227 248
-
(1989)
Information and Computation
, vol.80
, Issue.3
, pp. 227-248
-
-
Quinlan, J.R.1
Rivest, R.L.2
-
24
-
-
77951189598
-
Fast support vector machine classification of very large datasets
-
Springer
-
J. Fehr, K.Z. Arreola, H. Burkhardt, Fast support vector machine classification of very large datasets, in: GfKl, Studies in Classification, Data Analysis, Knowledge Organization, Springer, 2007, pp. 11-18.
-
(2007)
GfKl, Studies in Classification, Data Analysis, Knowledge Organization
, pp. 11-18
-
-
Fehr, J.1
Arreola, K.Z.2
Burkhardt, H.3
-
25
-
-
35148889936
-
A novel SVM decision tree and its application to face detection
-
IEEE Computer Society
-
J. Su, G. Wang, Q. Hu, S. Li, A novel SVM decision tree and its application to face detection, in: SNPD (1), IEEE Computer Society, 2007, pp. 385-389.
-
(2007)
SNPD
, Issue.1
, pp. 385-389
-
-
Su, J.1
Wang, G.2
Hu, Q.3
Li, S.4
-
26
-
-
64949166023
-
Oblique decision trees using embedded support vector machines in classifier ensembles
-
CIS 2008
-
V. Menkovski, I. Christou, S. Efremidis, Oblique decision trees using embedded support vector machines in classifier ensembles, in: 7th IEEE International Conference on Cybernetic Intelligent Systems, 2008, CIS 2008., 2008, pp. 1-6.
-
(2008)
7th IEEE International Conference on Cybernetic Intelligent Systems, 2008
, pp. 1-6
-
-
Menkovski, V.1
Christou, I.2
Efremidis, S.3
-
28
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
MIT Press, Cambridge, MA
-
J.C. Platt, Fast training of support vector machines using sequential minimal optimization, in: Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge, MA, 1998, pp. 185-208.
-
(1998)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
31
-
-
10044276875
-
Cost-sensitive learning and decision making for Massachusetts pip claim fraud data
-
S. Viaene, R.A. Derrig, G. Dedene Cost-sensitive learning and decision making for Massachusetts pip claim fraud data International Journal of Intelligent Systems 19 12 2004 1197 1215
-
(2004)
International Journal of Intelligent Systems
, vol.19
, Issue.12
, pp. 1197-1215
-
-
Viaene, S.1
Derrig, R.A.2
Dedene, G.3
-
32
-
-
22944460277
-
Mining the risk types of human papillomavirus (hpv) by adacost
-
Springer
-
S.-B. Park, S. Hwang, B.-T. Zhang, Mining the risk types of human papillomavirus (hpv) by adacost, in: DEXA, Lecture Notes in Computer Science, vol. 2736, Springer, 2003, pp. 403-412.
-
(2003)
DEXA, Lecture Notes in Computer Science
, vol.2736
, pp. 403-412
-
-
Park, S.-B.1
Hwang, S.2
Zhang, B.-T.3
-
33
-
-
28444495934
-
Weighted Support vector machine for classification with uneven training class sizes
-
Y. Huang, S. Du, Weighted Support vector machine for classification with uneven training class sizes, in: Proceedings of 2005 International Conference on Machine Learning and Cybernetics, vol. 7, 2005, pp. 4365-4369.
-
(2005)
Proceedings of 2005 International Conference on Machine Learning and Cybernetics
, vol.7
, pp. 4365-4369
-
-
Huang, Y.1
Du, S.2
-
35
-
-
0038710451
-
Efficient pruning methods for separate-and-conquer rule learning systems
-
W.W. Cohen, Efficient pruning methods for separate-and-conquer rule learning systems, in: IJCAI, 1993, pp. 988-994.
-
(1993)
IJCAI
, pp. 988-994
-
-
Cohen, W.W.1
-
36
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
Software available at 〈 〉
-
R. Fan, K. Chang, C. Hsieh, X. Wang, C.-J. Lin LIBLINEAR: a library for large linear classification Journal of Machine Learning Research 9 2008 1871 1874 Software available at 〈 http://www.csie.ntu.edu.tw/∼cjlin/ liblinear/ 〉
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.1
Chang, K.2
Hsieh, C.3
Wang, X.4
Lin, C.-J.5
-
37
-
-
56449086680
-
A dual coordinate descent method for large-scale linear SVM
-
C. Hsieh, K. Chang, C. Lin, S.S. Keerthi, S. Sundararajan, A dual coordinate descent method for large-scale linear SVM, in: ICML '08: Proceedings of the 25th International Conference on Machine Learning, vol. 307, 2008, pp. 408-415.
-
(2008)
ICML '08: Proceedings of the 25th International Conference on Machine Learning
, vol.307
, pp. 408-415
-
-
Hsieh, C.1
Chang, K.2
Lin, C.3
Keerthi, S.S.4
Sundararajan, S.5
-
38
-
-
78649405071
-
Large-scale support vector machines: Algorithms and theory
-
University of California, San Diego
-
A.K. Menon, Large-scale support vector machines: algorithms and theory, Technical Report, University of California, San Diego, 2009.
-
(2009)
Technical Report
-
-
Menon, A.K.1
-
39
-
-
56449110590
-
SVM optimization: Inverse dependence on training set size
-
S. Shalev-Shwartz, N. Srebro, SVM optimization: inverse dependence on training set size, in: Proceedings of the 25th International Conference on Machine Learning (ICML'08), vol. 307, 2008, pp. 928-935.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning (ICML'08)
, vol.307
, pp. 928-935
-
-
Shalev-Shwartz, S.1
Srebro, N.2
-
41
-
-
14344250824
-
Generalization bounds for decision trees
-
Y. Mansour, D.A. McAllester, Generalization bounds for decision trees, in: COLT, 2000, pp. 69-74.
-
(2000)
COLT
, pp. 69-74
-
-
Mansour, Y.1
McAllester, D.A.2
-
42
-
-
34547972943
-
Sample compression bounds for decision trees
-
M. Shah, Sample compression bounds for decision trees, in: ICML, vol. 227, 2007, pp. 799-806.
-
(2007)
ICML
, vol.227
, pp. 799-806
-
-
Shah, M.1
-
44
-
-
77952423822
-
Learning the set covering machine by bound minimization and margin-sparsity trade-off
-
F. Laviolette, M. Marchand, M. Shah, S. Shanian Learning the set covering machine by bound minimization and margin-sparsity trade-off Machine Learning 78 1-2 2010 175 201
-
(2010)
Machine Learning
, vol.78
, Issue.12
, pp. 175-201
-
-
Laviolette, F.1
Marchand, M.2
Shah, M.3
Shanian, S.4
-
46
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
R.C. Holte Very simple classification rules perform well on most commonly used datasets Machine Learning 11 1993 63 90
-
(1993)
Machine Learning
, vol.11
, pp. 63-90
-
-
Holte, R.C.1
-
52
-
-
84864289374
-
Fast support vector machine classification of very large datasets
-
Department of Computer
-
J. Fehr, K.Z. Arreola, H. Burkhardt, Fast support vector machine classification of very large datasets, Technical Report, University of Freiburg, Department of Computer, 2007.
-
(2007)
Technical Report, University of Freiburg
-
-
Fehr, J.1
Arreola, K.Z.2
Burkhardt, H.3
-
55
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R.E. Schapire, Y. Freund, P. Bartlett, W.S. Lee Boosting the margin: a new explanation for the effectiveness of voting methods The Annals of Statistics 26 5 1998 1651 1686
-
(1998)
The Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
|