메뉴 건너뛰기




Volumn 19, Issue 12, 2004, Pages 1197-1215

Cost-sensitive learning and decision making for massachusetts PIP claim fraud data

Author keywords

[No Author keywords available]

Indexed keywords

BUSINESS FUNCTIONS; COST-SENSITIVE LEARNING; DATA CONSOLIDATION; DECISION TREE; PERSONAL INJURY PROTECTION (PIP);

EID: 10044276875     PISSN: 08848173     EISSN: None     Source Type: Journal    
DOI: 10.1002/int.20049     Document Type: Article
Times cited : (9)

References (43)
  • 2
    • 1842451165 scopus 로고    scopus 로고
    • Insurance fraud
    • Derrig RA. Insurance fraud. J Risk Ins 2002;69:271-287.
    • (2002) J Risk Ins , vol.69 , pp. 271-287
    • Derrig, R.A.1
  • 3
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost F, Fawcett T. Robust classification for imprecise environments. Mach Learn 2001;42:203-231.
    • (2001) Mach Learn , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 5
    • 0036532641 scopus 로고    scopus 로고
    • Bayesian neural network learning for repeat purchase modelling in direct marketing
    • Baesens B, Viaene S, Van den Poel D, Vanthienen J, Dedene G. Bayesian neural network learning for repeat purchase modelling in direct marketing. Eur J Oper Res 2002;138:191-211.
    • (2002) Eur J Oper Res , vol.138 , pp. 191-211
    • Baesens, B.1    Viaene, S.2    Van Den Poel, D.3    Vanthienen, J.4    Dedene, G.5
  • 6
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 1997;30:1145-1159.
    • (1997) Pattern Recogn , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 7
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the ROC curve for multiple class classification problems
    • Hand DJ, Till RJ. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn 2001;45:171-186.
    • (2001) Mach Learn , vol.45 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 9
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143:29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 15
    • 1842451173 scopus 로고    scopus 로고
    • Comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection
    • Viaene S, Derrig RA, Baesens B, Dedene G. A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection. J Risk Ins 2002;69:373-421.
    • (2002) J Risk Ins , vol.69 , pp. 373-421
    • Viaene, S.1    Derrig, R.A.2    Baesens, B.3    Dedene, G.A.4
  • 17
  • 19
    • 0003259364 scopus 로고    scopus 로고
    • Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
    • Williams College, MA, June-July
    • Zadrozny B, Elkan C. Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In: 18th Int Conf on Machine Learning, Williams College, MA, June-July 2001.
    • (2001) 18th Int Conf on Machine Learning
    • Zadrozny, B.1    Elkan, C.2
  • 20
    • 0003006556 scopus 로고
    • Estimating probabilities: A crucial task in machine learning
    • Stockholm, Sweden, August
    • Cestnik B. Estimating probabilities: A crucial task in machine learning. In: 9th Eur Conf on Artificial Intelligence, Stockholm, Sweden, August 1990.
    • (1990) 9th Eur Conf on Artificial Intelligence
    • Cestnik, B.1
  • 21
    • 0000825041 scopus 로고
    • Bayes and pseudo-bayes estimates of conditional probabilities and their reliability
    • Vienna, Austria, April
    • Cussens J. Bayes and pseudo-Bayes estimates of conditional probabilities and their reliability. In: 6th Eur Conf on Machine Learning, Vienna, Austria, April 1993.
    • (1993) 6th Eur Conf on Machine Learning
    • Cussens, J.1
  • 23
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach Learn 1996;24:123-140.
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 25
    • 0002426982 scopus 로고    scopus 로고
    • Knowledge discovery via multiple models
    • Domingos P. Knowledge discovery via multiple models. Intell Data Anal 1998;2:187-202.
    • (1998) Intell Data Anal , vol.2 , pp. 187-202
    • Domingos, P.1
  • 27
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • Bauer E, Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Mach Learn 1999;36:105-139.
    • (1999) Mach Learn , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 28
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • Opitz D, Maclin R. Popular ensemble methods: An empirical study. J Artif Intell Res 1999;11:169-198.
    • (1999) J Artif Intell Res , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 29
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Shapire RE, Freund Y, Bartlett P, Lee WS. Boosting the margin: A new explanation for the effectiveness of voting methods. Ann Stat 1998;26:1651-1686.
    • (1998) Ann Stat , vol.26 , pp. 1651-1686
    • Shapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 30
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: A technique for combining boosting and wagging
    • Webb GI. MultiBoosting: A technique for combining boosting and wagging. Mach Learn 2000;40:159-196.
    • (2000) Mach Learn , vol.40 , pp. 159-196
    • Webb, G.I.1
  • 31
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Shapire RE, Singer Y. Improved boosting algorithms using confidence-rated predictions. Mach Learn 1999;37:297-336.
    • (1999) Mach Learn , vol.37 , pp. 297-336
    • Shapire, R.E.1    Singer, Y.2
  • 32
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y, Shapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 1997;55:119-139.
    • (1997) J Comput Syst Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Shapire, R.E.2
  • 33
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman JH, Hastie T, Tibshirani R. Additive logistic regression: A statistical view of boosting. Ann Stat 2000;38:337-374.
    • (2000) Ann Stat , vol.38 , pp. 337-374
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 37
    • 0001779764 scopus 로고
    • Fraud and automobile insurance: A report on the baseline study of bodily injury claims in Massachusetts
    • Weisberg HI, Derrig RA. Fraud and automobile insurance: A report on the baseline study of bodily injury claims in Massachusetts. J Ins Regul 1991;9:497-541.
    • (1991) J Ins Regul , vol.9 , pp. 497-541
    • Weisberg, H.I.1    Derrig, R.A.2
  • 38
    • 3042517969 scopus 로고
    • AIB Cost Containment/Fraud Filing DOI Docket R95-12 (IFRR-170), Automobile Insurers Bureau of Massachusetts, Boston, MA
    • Weisberg HI, Derrig RA. Identification and investigation of suspicious claims. AIB Cost Containment/Fraud Filing DOI Docket R95-12 (IFRR-170), Automobile Insurers Bureau of Massachusetts, Boston, MA, 1995.
    • (1995) Identification and Investigation of Suspicious Claims.
    • Weisberg, H.I.1    Derrig, R.A.2
  • 39
    • 1842555740 scopus 로고    scopus 로고
    • Quantitative methods for detecting fraudulent automobile bodily injury claims
    • Weisberg HI, Derrig RA. Quantitative methods for detecting fraudulent automobile bodily injury claims. Risques 1998;35:75-101.
    • (1998) Risques , vol.35 , pp. 75-101
    • Weisberg, H.I.1    Derrig, R.A.2
  • 41
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte RC. Very simple classification rules perform well on most commonly used datasets. Mach Learn 1993;11:63-90.
    • (1993) Mach Learn , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 42
    • 0002129041 scopus 로고    scopus 로고
    • Generating accurate rule sets without global optimization
    • Madison, WI, July
    • Frank E, Witten IH. Generating accurate rule sets without global optimization. In: 15th Int Conf on Machine Learning, Madison, WI, July 1998.
    • (1998) 15th Int Conf on Machine Learning
    • Frank, E.1    Witten, I.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.