-
2
-
-
1842451165
-
Insurance fraud
-
Derrig RA. Insurance fraud. J Risk Ins 2002;69:271-287.
-
(2002)
J Risk Ins
, vol.69
, pp. 271-287
-
-
Derrig, R.A.1
-
3
-
-
0035283313
-
Robust classification for imprecise environments
-
Provost F, Fawcett T. Robust classification for imprecise environments. Mach Learn 2001;42:203-231.
-
(2001)
Mach Learn
, vol.42
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
4
-
-
0002900357
-
The case against accuracy estimation for comparing classifiers
-
Madison, WI, July
-
Provost F, Fawcett T, Kohavi R. The case against accuracy estimation for comparing classifiers. In: 15th Int Conf on Machine Learning, Madison, WI, July 1998.
-
(1998)
15th Int Conf on Machine Learning
-
-
Provost, F.1
Fawcett, T.2
Kohavi, R.3
-
5
-
-
0036532641
-
Bayesian neural network learning for repeat purchase modelling in direct marketing
-
Baesens B, Viaene S, Van den Poel D, Vanthienen J, Dedene G. Bayesian neural network learning for repeat purchase modelling in direct marketing. Eur J Oper Res 2002;138:191-211.
-
(2002)
Eur J Oper Res
, vol.138
, pp. 191-211
-
-
Baesens, B.1
Viaene, S.2
Van Den Poel, D.3
Vanthienen, J.4
Dedene, G.5
-
6
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 1997;30:1145-1159.
-
(1997)
Pattern Recogn
, vol.30
, pp. 1145-1159
-
-
Bradley, A.P.1
-
7
-
-
0003562954
-
A simple generalisation of the area under the ROC curve for multiple class classification problems
-
Hand DJ, Till RJ. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn 2001;45:171-186.
-
(2001)
Mach Learn
, vol.45
, pp. 171-186
-
-
Hand, D.J.1
Till, R.J.2
-
9
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143:29-36.
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
11
-
-
0000619102
-
Pruning decision trees with misclassification costs
-
Chemnitz, Germany, April
-
Bradford JP, Kunz C, Kohavi R, Brunk C, Brodley CE. Pruning decision trees with misclassification costs. In: 10th Eur Conf on Machine Learning, Chemnitz, Germany, April 1998.
-
(1998)
10th Eur Conf on Machine Learning
-
-
Bradford, J.P.1
Kunz, C.2
Kohavi, R.3
Brunk, C.4
Brodley, C.E.5
-
15
-
-
1842451173
-
Comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection
-
Viaene S, Derrig RA, Baesens B, Dedene G. A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection. J Risk Ins 2002;69:373-421.
-
(2002)
J Risk Ins
, vol.69
, pp. 373-421
-
-
Viaene, S.1
Derrig, R.A.2
Baesens, B.3
Dedene, G.A.4
-
19
-
-
0003259364
-
Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
-
Williams College, MA, June-July
-
Zadrozny B, Elkan C. Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In: 18th Int Conf on Machine Learning, Williams College, MA, June-July 2001.
-
(2001)
18th Int Conf on Machine Learning
-
-
Zadrozny, B.1
Elkan, C.2
-
20
-
-
0003006556
-
Estimating probabilities: A crucial task in machine learning
-
Stockholm, Sweden, August
-
Cestnik B. Estimating probabilities: A crucial task in machine learning. In: 9th Eur Conf on Artificial Intelligence, Stockholm, Sweden, August 1990.
-
(1990)
9th Eur Conf on Artificial Intelligence
-
-
Cestnik, B.1
-
21
-
-
0000825041
-
Bayes and pseudo-bayes estimates of conditional probabilities and their reliability
-
Vienna, Austria, April
-
Cussens J. Bayes and pseudo-Bayes estimates of conditional probabilities and their reliability. In: 6th Eur Conf on Machine Learning, Vienna, Austria, April 1993.
-
(1993)
6th Eur Conf on Machine Learning
-
-
Cussens, J.1
-
23
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach Learn 1996;24:123-140.
-
(1996)
Mach Learn
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
25
-
-
0002426982
-
Knowledge discovery via multiple models
-
Domingos P. Knowledge discovery via multiple models. Intell Data Anal 1998;2:187-202.
-
(1998)
Intell Data Anal
, vol.2
, pp. 187-202
-
-
Domingos, P.1
-
27
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting and variants
-
Bauer E, Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Mach Learn 1999;36:105-139.
-
(1999)
Mach Learn
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
28
-
-
0000551189
-
Popular ensemble methods: An empirical study
-
Opitz D, Maclin R. Popular ensemble methods: An empirical study. J Artif Intell Res 1999;11:169-198.
-
(1999)
J Artif Intell Res
, vol.11
, pp. 169-198
-
-
Opitz, D.1
Maclin, R.2
-
29
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Shapire RE, Freund Y, Bartlett P, Lee WS. Boosting the margin: A new explanation for the effectiveness of voting methods. Ann Stat 1998;26:1651-1686.
-
(1998)
Ann Stat
, vol.26
, pp. 1651-1686
-
-
Shapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
30
-
-
0034247206
-
MultiBoosting: A technique for combining boosting and wagging
-
Webb GI. MultiBoosting: A technique for combining boosting and wagging. Mach Learn 2000;40:159-196.
-
(2000)
Mach Learn
, vol.40
, pp. 159-196
-
-
Webb, G.I.1
-
31
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Shapire RE, Singer Y. Improved boosting algorithms using confidence-rated predictions. Mach Learn 1999;37:297-336.
-
(1999)
Mach Learn
, vol.37
, pp. 297-336
-
-
Shapire, R.E.1
Singer, Y.2
-
32
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y, Shapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 1997;55:119-139.
-
(1997)
J Comput Syst Sci
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Shapire, R.E.2
-
33
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman JH, Hastie T, Tibshirani R. Additive logistic regression: A statistical view of boosting. Ann Stat 2000;38:337-374.
-
(2000)
Ann Stat
, vol.38
, pp. 337-374
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
35
-
-
0013316935
-
AdaCost: Misclassification cost-sensitive boosting
-
Bled, Slovenia, June
-
Fan W, Stolfo SJ, Zhang J, Chan PK. AdaCost: Misclassification cost-sensitive boosting. In: 16th Int Conf on Machine Learning, Bled, Slovenia, June 1999.
-
(1999)
16th Int Conf on Machine Learning
-
-
Fan, W.1
Stolfo, S.J.2
Zhang, J.3
Chan, P.K.4
-
36
-
-
10044243164
-
-
AIB Cost Containment/Fraud Filing DOI Docket R98-41 (IFRR-267), Automobile Insurers Bureau of Massachusetts, Boston, MA
-
Derrig RA, Weisberg HI. AIB PIP screening experiment final report - Understanding and improving the claim investigation process. AIB Cost Containment/Fraud Filing DOI Docket R98-41 (IFRR-267), Automobile Insurers Bureau of Massachusetts, Boston, MA, 1998.
-
(1998)
AIB PIP Screening Experiment Final Report - Understanding and Improving the Claim Investigation Process
-
-
Derrig, R.A.1
Weisberg, H.I.2
-
37
-
-
0001779764
-
Fraud and automobile insurance: A report on the baseline study of bodily injury claims in Massachusetts
-
Weisberg HI, Derrig RA. Fraud and automobile insurance: A report on the baseline study of bodily injury claims in Massachusetts. J Ins Regul 1991;9:497-541.
-
(1991)
J Ins Regul
, vol.9
, pp. 497-541
-
-
Weisberg, H.I.1
Derrig, R.A.2
-
38
-
-
3042517969
-
-
AIB Cost Containment/Fraud Filing DOI Docket R95-12 (IFRR-170), Automobile Insurers Bureau of Massachusetts, Boston, MA
-
Weisberg HI, Derrig RA. Identification and investigation of suspicious claims. AIB Cost Containment/Fraud Filing DOI Docket R95-12 (IFRR-170), Automobile Insurers Bureau of Massachusetts, Boston, MA, 1995.
-
(1995)
Identification and Investigation of Suspicious Claims.
-
-
Weisberg, H.I.1
Derrig, R.A.2
-
39
-
-
1842555740
-
Quantitative methods for detecting fraudulent automobile bodily injury claims
-
Weisberg HI, Derrig RA. Quantitative methods for detecting fraudulent automobile bodily injury claims. Risques 1998;35:75-101.
-
(1998)
Risques
, vol.35
, pp. 75-101
-
-
Weisberg, H.I.1
Derrig, R.A.2
-
41
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
Holte RC. Very simple classification rules perform well on most commonly used datasets. Mach Learn 1993;11:63-90.
-
(1993)
Mach Learn
, vol.11
, pp. 63-90
-
-
Holte, R.C.1
-
42
-
-
0002129041
-
Generating accurate rule sets without global optimization
-
Madison, WI, July
-
Frank E, Witten IH. Generating accurate rule sets without global optimization. In: 15th Int Conf on Machine Learning, Madison, WI, July 1998.
-
(1998)
15th Int Conf on Machine Learning
-
-
Frank, E.1
Witten, I.H.2
|