메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages 189-217

Generalization error bounds for threshold decision lists

Author keywords

Covering numbers; Generalization error; Growth function; Large margin bounds; Perceptron decision trees; Threshold decision lists

Indexed keywords

DECISION TREES; ERROR ANALYSIS; FORESTRY; GEOMETRY; ITERATIVE METHODS;

EID: 4544380243     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (18)

References (48)
  • 1
    • 0031176507 scopus 로고    scopus 로고
    • Scale-sensitive dimensions, uniform convergence, and learnability
    • N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler (1997). Scale-sensitive dimensions, uniform convergence, and learnability. Journal of the ACM 44(4):615-631.
    • (1997) Journal of the ACM , vol.44 , Issue.4 , pp. 615-631
    • Alon, N.1    Ben-David, S.2    Cesa-Bianchi, N.3    Haussler, D.4
  • 2
    • 1542283286 scopus 로고    scopus 로고
    • SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA
    • M. Anthony (2001). Discrete Mathematics of Neural Networks: Selected Topics. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA.
    • (2001) Discrete Mathematics of Neural Networks: Selected Topics
    • Anthony, M.1
  • 3
    • 84925788619 scopus 로고    scopus 로고
    • RUTCOR Research, Rutgers Center for Operations Research. Also, CDAM research report LSE-CDAM-2002-10, Centre for Discrete and Applicable Mathematics, London School of Economics. To appear, Discrete Mathematics
    • M. Anthony (2002). Partitioning points by parallel planes. RUTCOR Research Report RRR-39-2002, Rutgers Center for Operations Research. (Also, CDAM research report LSE-CDAM-2002-10, Centre for Discrete and Applicable Mathematics, London School of Economics.) To appear, Discrete Mathematics.
    • (2002) Partitioning Points by Parallel Planes
    • Anthony, M.1
  • 5
    • 0034414856 scopus 로고    scopus 로고
    • Function learning from interpolation. Combinatorics
    • M. Anthony and P. L. Bartlett (2000). Function learning from interpolation. Combinatorics, Probability and Computing, 9:213-225.
    • (2000) Probability and Computing , vol.9 , pp. 213-225
    • Anthony, M.1    Bartlett, P.L.2
  • 6
    • 0003487046 scopus 로고
    • Cambridge Tracts in Theoretical Computer Science, 30. Cambridge University Press, Cambridge, UK
    • M. Anthony and N. L. Biggs (1992). Computational Learning Theory: An Introduction. Cambridge Tracts in Theoretical Computer Science, 30. Cambridge University Press, Cambridge, UK.
    • (1992) Computational Learning Theory: An Introduction
    • Anthony, M.1    Biggs, N.L.2
  • 8
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • P. L. Bartlett (1998). The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Transactions on Information Theory 44(2):525-536.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 11
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • E. Baum and D. Haussler (1989). What size net gives valid generalization? Neural Computation, 1(1):151-160.
    • (1989) Neural Computation , vol.1 , Issue.1 , pp. 151-160
    • Baum, E.1    Haussler, D.2
  • 17
    • 24344464548 scopus 로고    scopus 로고
    • Some local measures of complexity on convex hulls and generalization bounds
    • ed. J. Kivinen and R. H. Sloan. Springer Lecture Notes in Artificial Intelligence 2375
    • O. Bousquet, V. Koltchinskii and D. Panchenko (2002). Some local measures of complexity on convex hulls and generalization bounds. Proceedings of the 15th Annual Conference on Computational Learning Theory, ed. J. Kivinen and R. H. Sloan. Springer Lecture Notes in Artificial Intelligence 2375.
    • (2002) Proceedings of the 15th Annual Conference on Computational Learning Theory
    • Bousquet, O.1    Koltchinskii, V.2    Panchenko, D.3
  • 18
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • T. M. Cover (1965). Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition, IEEE Trans. Electronic Computers 14:326-334.
    • (1965) IEEE Trans. Electronic Computers , vol.14 , pp. 326-334
    • Cover, T.M.1
  • 23
    • 0010950011 scopus 로고
    • On defining sets of vertices of the hypercube by linear inequalities
    • R. G. Jeroslow (1975). On defining sets of vertices of the hypercube by linear inequalities. Discrete Mathematics, 11:119-124.
    • (1975) Discrete Mathematics , vol.11 , pp. 119-124
    • Jeroslow, R.G.1
  • 25
    • 0001924169 scopus 로고
    • On learning simple neural concepts: From halfspace intersections to neural decision lists
    • M. Marchand and M. Golea (1993). On learning simple neural concepts: from halfspace intersections to neural decision lists. Network: Computation in Neural Systems, 4:67-85.
    • (1993) Network: Computation in Neural Systems , vol.4 , pp. 67-85
    • Marchand, M.1    Golea, M.2
  • 26
    • 84956226983 scopus 로고
    • A convergence theorem for sequential learning in two-layer perceptrons
    • M. Marchand, M. Golea and P. Rujan (1990). A convergence theorem for sequential learning in two-layer perceptrons. Europhys. Lett. 11:487-492.
    • (1990) Europhys. Lett. , vol.11 , pp. 487-492
    • Marchand, M.1    Golea, M.2    Rujan, P.3
  • 28
    • 35248851077 scopus 로고    scopus 로고
    • A few notes on statistical learning theory
    • S. Mendelson, A. J. Smola Eds, Springer
    • S. Mendelson (2003). A few notes on Statistical Learning Theory. In Advanced Lectures in Machine Learning, (S. Mendelson, A. J. Smola Eds), LNCS 2600, 1-40, Springer.
    • (2003) Advanced Lectures in Machine Learning , vol.2600 LNCS , pp. 1-40
    • Mendelson, S.1
  • 30
    • 0037507305 scopus 로고    scopus 로고
    • On the number of multilinear partitions and the computing capacity of multiple-valued multiple-threshold perceptrons
    • A. Ngom, I. Stojmenovic and J. Žunić (2003). On the number of multilinear partitions and the computing capacity of multiple-valued multiple-threshold perceptrons, IEEE Transactions on Neural Networks 14(3):469-477.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.3 , pp. 469-477
    • Ngom, A.1    Stojmenovic, I.2    Žunić, J.3
  • 34
    • 0024627518 scopus 로고
    • Inferring decision trees using the minimum description length principle
    • J. R. Quinlan and R. Rivest (1989). Inferring decision trees using the minimum description length principle. Information and Computation 80:227-248.
    • (1989) Information and Computation , vol.80 , pp. 227-248
    • Quinlan, J.R.1    Rivest, R.2
  • 35
    • 1442267080 scopus 로고
    • Learning decision lists
    • R. L. Rivest (1987). Learning Decision Lists. Machine Learning 2(3):229-246.
    • (1987) Machine Learning , vol.2 , Issue.3 , pp. 229-246
    • Rivest, R.L.1
  • 42
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L. G. Valiant (1984). A theory of the learnable. Communications of the ACM, 27(11):1134-1142.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 45
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. N. Vapnik and A. Y. Chervonenkis (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2):264-280.
    • (1971) Theory of Probability and its Applications , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 46
    • 0347067948 scopus 로고    scopus 로고
    • Covering number bounds of certain regularized linear function classes
    • T. Zhang (2002). Covering number bounds of certain regularized linear function classes. Journal of Machine Learning Research, 2:527-550.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 527-550
    • Zhang, T.1
  • 47
    • 0042805943 scopus 로고
    • Estimating the efficiency of threshold representations of Boolean functions
    • A. Zuev and L. I. Lipkin (1988). Estimating the efficiency of threshold representations of Boolean functions. Cybernetics 24:713-723.
    • (1988) Cybernetics , vol.24 , pp. 713-723
    • Zuev, A.1    Lipkin, L.I.2
  • 48
    • 4544247860 scopus 로고
    • (Translated from Kibernetika (Kiev), 6, 1988:29-37.)
    • (1988) Kibernetika (Kiev) , vol.6 , pp. 29-37


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.