메뉴 건너뛰기




Volumn 78, Issue 1-2, 2010, Pages 175-201

Learning the set covering machine by bound minimization and margin-sparsity trade-off

Author keywords

Bound minimization; Margin sparsity trade off; Risk bounds; Sample compression; Set covering machine

Indexed keywords

CLASS COMPLEXITY; COMPRESSION SET; LEARNING STRATEGY; MARGIN-SPARSITY TRADE-OFF; MODEL SELECTION; RADEMACHER COMPLEXITY; SAMPLE COMPRESSION; SET COVERING MACHINES; VC-DIMENSION;

EID: 77952423822     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-009-5137-3     Document Type: Article
Times cited : (7)

References (31)
  • 1
    • 0010575050 scopus 로고    scopus 로고
    • Combinatorial variability of Vapnik-Chervonenkis classes
    • Ben-David, S., & Litman, A. (1998). Combinatorial variability of Vapnik-Chervonenkis classes. Discrete Applied Mathematics, 86, 3-25.
    • (1998) Discrete Applied Mathematics , vol.86 , pp. 3-25
    • Ben-David, S.1    Litman, A.2
  • 5
    • 0000301097 scopus 로고
    • A greedy heuristic for the set covering problem
    • Chvátal, V (1979). A greedy heuristic for the set covering problem. Mathematics of Operations Research, 4, 233-235.
    • (1979) Mathematics of Operations Research , vol.4 , pp. 233-235
    • Chvátal, V.1
  • 6
    • 0029521676 scopus 로고
    • Sample compression, learnability, and the Vapnik-Chervonenkis dimension
    • Floyd, S., & Warmuth, M. (1995). Sample compression, learnability, and the Vapnik-Chervonenkis dimension. Machine Learning, 21(3), 269-304.
    • (1995) Machine Learning , vol.21 , Issue.3 , pp. 269-304
    • Floyd, S.1    Warmuth, M.2
  • 9
    • 21244457634 scopus 로고    scopus 로고
    • PAC-bayesian compression bounds on the prediction error of learning algorithms for classification
    • DOI 10.1007/s10994-005-0462-7
    • Graepel, T., Herbrich, R., & Shawe-Taylor, J. (2005). PAC-Bayesian compression bounds on the prediction error of learning algorithms for classification. Machine Learning, 59(12), 55-76. (Pubitemid 40890412)
    • (2005) Machine Learning , vol.59 , Issue.1-2 , pp. 55-76
    • Graepel, T.1    Herbrich, R.2    Shawe-Taylor, J.3
  • 11
    • 0024082469 scopus 로고
    • Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
    • Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Artificial Intelligence, 36, 177-221.
    • (1988) Artificial Intelligence , vol.36 , pp. 177-221
    • Haussler, D.1
  • 13
    • 34848861078 scopus 로고    scopus 로고
    • Unlabeled compression schemes for maximum classes
    • Kuzmin, D., & Warmuth, M. K. (2007). Unlabeled compression schemes for maximum classes. Journal of Machine Learning Research, 8, 2047-2081. (Pubitemid 47510991)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 2047-2081
    • Kuzmin, D.1    Warmuth, M.K.2
  • 14
    • 21844462365 scopus 로고    scopus 로고
    • Tutorial on practical prediction theory for classification
    • Langford, J. (2005). Tutorial on practical prediction theory for classification. Journal of Machine Learning Research, 3, 273-306.
    • (2005) Journal of Machine Learning Research , vol.3 , pp. 273-306
    • Langford, J.1
  • 15
    • 34547675833 scopus 로고    scopus 로고
    • PAC-Bayes risk bounds for stochastic averages and majority votes of sample-compressed classifiers
    • Laviolette, F., & Marchand, M. (2007). PAC-Bayes risk bounds for stochastic averages and majority votes of sample-compressed classifiers. Journal of Machine Learning Research, 8, 1461-1487. (Pubitemid 47210275)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1461-1487
    • Laviolette, F.1    Marchand, M.2
  • 18
    • 0041995194 scopus 로고
    • Relating data compression and learnability
    • University of California Santa Cruz, Santa Cruz
    • Littlestone, N., & Warmuth, M. (1986). Relating data compression and learnability. Technical report, University of California Santa Cruz, Santa Cruz.
    • (1986) Technical Report
    • Littlestone, N.1    Warmuth, M.2
  • 23
    • 0037399538 scopus 로고    scopus 로고
    • PAC-Bayesian stochastic model selection
    • A preliminary version appeared in proceedings of COLT'99
    • McAllester, D. (2003). PAC-Bayesian stochastic model selection. Machine Learning, 51,5-21. A preliminary version appeared in proceedings of COLT'99.
    • (2003) Machine Learning , vol.51 , pp. 5-21
    • McAllester, D.1
  • 24
    • 0036160893 scopus 로고    scopus 로고
    • Rademacher averages and phase transitions in Glivenko-Cantelli class
    • Mendelson, S. (2002). Rademacher averages and phase transitions in Glivenko-Cantelli class. IEEE Transactions on Information Theory, 48, 251-263.
    • (2002) IEEE Transactions on Information Theory , vol.48 , pp. 251-263
    • Mendelson, S.1
  • 25
    • 77952428272 scopus 로고    scopus 로고
    • Geometric & topological representations of maximum classes with applications to sample compression
    • Rubinstein, J. H., & Rubinstein, B. I. P. (2008). Geometric & topological representations of maximum classes with applications to sample compression. In COLT (pp. 299-310).
    • (2008) COLT , pp. 299-310
    • Rubinstein, J.H.1    Rubinstein, B.I.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.