메뉴 건너뛰기




Volumn 3, Issue 8, 2011, Pages 1-14

Mechanisms of protein retention in the Golgi

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84863860778     PISSN: None     EISSN: 19430264     Source Type: Journal    
DOI: 10.1101/cshperspect.a005264     Document Type: Article
Times cited : (107)

References (121)
  • 1
    • 10944249673 scopus 로고    scopus 로고
    • Localization of GDP-mannose transporter in the golgi requires retrieval to the endoplasmic reticulum depending on its cytoplasmic tail and coatomer
    • Abe M, Noda Y, Adachi H, Yoda K. 2004. Localization of GDP-mannose transporter in the golgi requires retrieval to the endoplasmic reticulum depending on its cytoplasmic tail and coatomer. J Cell Sci 117: 5687-5696.
    • (2004) J Cell Sci , vol.117 , pp. 5687-5696
    • Abe, M.1    Noda, Y.2    Adachi, H.3    Yoda, K.4
  • 2
    • 0026607683 scopus 로고
    • Golgi retention of a trans-golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain
    • Aoki D, Lee N, Yamaguchi N, Dubois C, Fukuda MN. 1992. Golgi retention of a trans-golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain. Proc Natl Acad Sci 89: 4319-4323.
    • (1992) Proc Natl Acad Sci , vol.89 , pp. 4319-4323
    • Aoki, D.1    Lee, N.2    Yamaguchi, N.3    Dubois, C.4    Fukuda, M.N.5
  • 3
    • 0035172474 scopus 로고    scopus 로고
    • Lumenal endosomal and golgi-retrieval determinants involved in pH-sensitive targeting of an early golgi protein
    • Bachert C, Lee TH, Linstedt AD. 2001. Lumenal endosomal and golgi-retrieval determinants involved in pH-sensitive targeting of an early golgi protein. Mol Biol Cell 12: 3152-3160.
    • (2001) Mol Biol Cell , vol.12 , pp. 3152-3160
    • Bachert, C.1    Lee, T.H.2    Linstedt, A.D.3
  • 4
    • 0031808667 scopus 로고    scopus 로고
    • Recycling of the yeast v-SNARE Sec22p involves COPI-proteins and the ER transmembrane proteins Ufe1p and Sec20p
    • Ballensiefen W, Ossipov D, Schmitt HD. 1998. Recycling of the yeast v-SNARE Sec22p involves COPI-proteins and the ER transmembrane proteins Ufe1p and Sec20p. J Cell Sci 111 (Pt 11): 1507-1520.
    • (1998) J Cell Sci , vol.111 , Issue.Pt 11 , pp. 1507-1520
    • Ballensiefen, W.1    Ossipov, D.2    Schmitt, H.D.3
  • 5
    • 0027997974 scopus 로고
    • Localization of Sed5, a putative vesicle targeting molecule, to the cis-golgi network involves both its transmembrane and cytoplasmic domains
    • Banfield DK, Lewis MJ, Rabouille C, Warren G, Pelham HR. 1994. Localization of Sed5, a putative vesicle targeting molecule, to the cis-golgi network involves both its transmembrane and cytoplasmic domains. J Cell Biol 127: 357-371.
    • (1994) J Cell Biol , vol.127 , pp. 357-371
    • Banfield, D.K.1    Lewis, M.J.2    Rabouille, C.3    Warren, G.4    Pelham, H.R.5
  • 6
    • 0034528352 scopus 로고    scopus 로고
    • The transmembrane domain of murine α-mannosidase IB is a major determinant of golgi localization
    • Becker B, Haggarty A, Romero PA, Poon T, Herscovics A. 2000. The transmembrane domain of murine α-mannosidase IB is a major determinant of golgi localization. Eur J Cell Biol 79: 986-992.
    • (2000) Eur J Cell Biol , vol.79 , pp. 986-992
    • Becker, B.1    Haggarty, A.2    Romero, P.A.3    Poon, T.4    Herscovics, A.5
  • 7
    • 28444439900 scopus 로고    scopus 로고
    • Organelle identity and the signposts for membrane traffic
    • Behnia R, Munro S. 2005. Organelle identity and the signposts for membrane traffic. Nature 438: 597-604.
    • (2005) Nature , vol.438 , pp. 597-604
    • Behnia, R.1    Munro, S.2
  • 8
    • 2342546616 scopus 로고    scopus 로고
    • Targeting of the arf-like GTPase Arl3p to the Golgi requires Nterminal acetylation and the membrane protein Sys1p
    • Behnia R, Panic B, Whyte JR, Munro S. 2004. Targeting of the arf-like GTPase Arl3p to the Golgi requires Nterminal acetylation and the membrane protein Sys1p. Nat Cell Biol 6: 405-413.
    • (2004) Nat Cell Biol , vol.6 , pp. 405-413
    • Behnia, R.1    Panic, B.2    Whyte, J.R.3    Munro, S.4
  • 10
    • 0033789121 scopus 로고    scopus 로고
    • Nucleotide sugar transporters of the golgi apparatus
    • Berninsone PM, Hirschberg CB. 2000. Nucleotide sugar transporters of the golgi apparatus. Curr Opin Struct Biol 10: 542-547.
    • (2000) Curr Opin Struct Biol , vol.10 , pp. 542-547
    • Berninsone, P.M.1    Hirschberg, C.B.2
  • 11
    • 33748313351 scopus 로고    scopus 로고
    • Retrograde transport from endosomes to the trans-golgi network
    • Bonifacino JS, Rojas R. 2006. Retrograde transport from endosomes to the trans-golgi network. Nat Rev Mol Cell Biol 7: 568-579.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 568-579
    • Bonifacino, J.S.1    Rojas, R.2
  • 13
    • 0027892019 scopus 로고
    • Cholesterol and the golgi apparatus
    • Bretscher MS, Munro S. 1993. Cholesterol and the golgi apparatus. Science 261: 1280-1281.
    • (1993) Science , vol.261 , pp. 1280-1281
    • Bretscher, M.S.1    Munro, S.2
  • 14
    • 0034607646 scopus 로고    scopus 로고
    • Formation of insoluble oligomers correlates with ST6Gal I stable localization in the golgi
    • Chen C, Ma J, Lazic A, Backovic M, Colley KJ. 2000. Formation of insoluble oligomers correlates with ST6Gal I stable localization in the golgi. J Biol Chem 275: 13819-13826.
    • (2000) J Biol Chem , vol.275 , pp. 13819-13826
    • Chen, C.1    Ma, J.2    Lazic, A.3    Backovic, M.4    Colley, K.J.5
  • 16
    • 66249101186 scopus 로고    scopus 로고
    • The cytoplasmic and transmembrane domains of secretor type α1,2fucosyltransferase confer atypical cellular localisation
    • Christiansen D, Milland J, Dodson HC, Lazarus BD, Sandrin MS. 2009. The cytoplasmic and transmembrane domains of secretor type α1,2fucosyltransferase confer atypical cellular localisation. J Mol Recognit 22: 250-254.
    • (2009) J Mol Recognit , vol.22 , pp. 250-254
    • Christiansen, D.1    Milland, J.2    Dodson, H.C.3    Lazarus, B.D.4    Sandrin, M.S.5
  • 17
    • 0031040995 scopus 로고    scopus 로고
    • Golgi localization of glycosyltransferases: More questions than answers
    • Colley KJ. 1997. Golgi localization of glycosyltransferases: More questions than answers. Glycobiology 7: 1-13.
    • (1997) Glycobiology , vol.7 , pp. 1-13
    • Colley, K.J.1
  • 18
    • 0028181745 scopus 로고
    • Coatomer interaction with di-lysine endoplasmic reticulum retention motifs
    • Cosson P, Letourneur F. 1994. Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263: 1629-1631.
    • (1994) Science , vol.263 , pp. 1629-1631
    • Cosson, P.1    Letourneur, F.2
  • 20
    • 33751422226 scopus 로고    scopus 로고
    • Synthetic glycobiology: Exploits in the golgi compartment
    • Czlapinski JL, Bertozzi CR. 2006. Synthetic glycobiology: Exploits in the golgi compartment. Curr Opin Chem Biol 10: 645-651.
    • (2006) Curr Opin Chem Biol , vol.10 , pp. 645-651
    • Czlapinski, J.L.1    Bertozzi, C.R.2
  • 21
    • 3142514373 scopus 로고    scopus 로고
    • The roles of enzyme localisation and complex formation in glycan assembly within the golgi apparatus
    • de Graffenried CL., Bertozzi CR. 2004. The roles of enzyme localisation and complex formation in glycan assembly within the golgi apparatus. Curr Opin Cell Biol 16: 356-363.
    • (2004) Curr Opin Cell Biol , vol.16 , pp. 356-363
    • de Graffenried, C.L.1    Bertozzi, C.R.2
  • 22
    • 0031466580 scopus 로고    scopus 로고
    • The VRG4 gene is required for GDP-mannose transport into the lumen of the golgi in the yeast, saccharomyces cerevisiae
    • Dean N, Zhang YB, Poster JB. 1997. The VRG4 gene is required for GDP-mannose transport into the lumen of the golgi in the yeast, saccharomyces cerevisiae. J Biol Chem 272: 31908-31914.
    • (1997) J Biol Chem , vol.272 , pp. 31908-31914
    • Dean, N.1    Zhang, Y.B.2    Poster, J.B.3
  • 24
    • 69449102282 scopus 로고    scopus 로고
    • The length of cargo-protein transmembrane segments drives secretory transport by facilitating cargo concentration in export domains
    • Dukhovny A, Yaffe Y, Shepshelovitch J, Hirschberg K. 2009. The length of cargo-protein transmembrane segments drives secretory transport by facilitating cargo concentration in export domains. J Cell Sci 122: 1759-1767.
    • (2009) J Cell Sci , vol.122 , pp. 1759-1767
    • Dukhovny, A.1    Yaffe, Y.2    Shepshelovitch, J.3    Hirschberg, K.4
  • 25
    • 14044256547 scopus 로고    scopus 로고
    • Multiple signals are required for α2,6-sialyltransferase (ST6Gal I) oligomerization and golgi localization
    • Fenteany FH, Colley KJ. 2005. Multiple signals are required for α2,6-sialyltransferase (ST6Gal I) oligomerization and golgi localization. J Biol Chem 280: 5423-5429.
    • (2005) J Biol Chem , vol.280 , pp. 5423-5429
    • Fenteany, F.H.1    Colley, K.J.2
  • 26
    • 1842636943 scopus 로고    scopus 로고
    • Localization and activity of the SNARE Ykt6 determined by its regulatory domain and palmitoylation
    • Fukasawa M, Varlamov O, Eng WS, Sollner TH, Rothman JE. 2004. Localization and activity of the SNARE Ykt6 determined by its regulatory domain and palmitoylation. Proc Natl Acad Sci 101: 4815-4820.
    • (2004) Proc Natl Acad Sci , vol.101 , pp. 4815-4820
    • Fukasawa, M.1    Varlamov, O.2    Eng, W.S.3    Sollner, T.H.4    Rothman, J.E.5
  • 27
    • 77953161781 scopus 로고    scopus 로고
    • Regulation of Oglycosylation through golgi-to-ER relocation of initiation enzymes
    • Gill DJ, Chia J, Senewiratne J, Bard F. 2010. Regulation of Oglycosylation through golgi-to-ER relocation of initiation enzymes. J Cell Biol 189: 843-858.
    • (2010) J Cell Biol , vol.189 , pp. 843-858
    • Gill, D.J.1    Chia, J.2    Senewiratne, J.3    Bard, F.4
  • 28
    • 38149068433 scopus 로고    scopus 로고
    • The small G proteins of the arf family and their regulators
    • Gillingham AK, Munro S. 2007. The small G proteins of the arf family and their regulators. Annual Rev Cell Dev Biol 23: 579-611.
    • (2007) Annual Rev Cell Dev Biol , vol.23 , pp. 579-611
    • Gillingham, A.K.1    Munro, S.2
  • 29
    • 0141890299 scopus 로고    scopus 로고
    • Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells
    • Giraudo CG, Maccioni HJ. 2003. Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells. J Biol Chem 278: 40262-40271.
    • (2003) J Biol Chem , vol.278 , pp. 40262-40271
    • Giraudo, C.G.1    Maccioni, H.J.2
  • 30
    • 0035852635 scopus 로고    scopus 로고
    • Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the golgi apparatus
    • Giraudo CG, Daniotti JL, Maccioni HJ. 2001. Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the golgi apparatus. Proc Natl Acad Sci 98: 1625-1630.
    • (2001) Proc Natl Acad Sci , vol.98 , pp. 1625-1630
    • Giraudo, C.G.1    Daniotti, J.L.2    Maccioni, H.J.3
  • 31
    • 0031809680 scopus 로고    scopus 로고
    • Targeting of proteins to the golgi apparatus
    • Gleeson PA. 1998. Targeting of proteins to the golgi apparatus. Histochem Cell Biol 109: 517-532.
    • (1998) Histochem Cell Biol , vol.109 , pp. 517-532
    • Gleeson, P.A.1
  • 32
    • 70350230237 scopus 로고    scopus 로고
    • Membrane traffic within the golgi apparatus
    • Glick BS, Nakano A. 2009. Membrane traffic within the golgi apparatus. Annu Rev Cell Dev Biol 25: 113-132.
    • (2009) Annu Rev Cell Dev Biol , vol.25 , pp. 113-132
    • Glick, B.S.1    Nakano, A.2
  • 33
    • 0033579467 scopus 로고    scopus 로고
    • The cytoplasmic, transmembrane, and stem regions of glycosyltransferases specify their in vivo functional sublocalization and stability in the golgi
    • Grabenhorst E, Conradt HS. 1999. The cytoplasmic, transmembrane, and stem regions of glycosyltransferases specify their in vivo functional sublocalization and stability in the golgi. J Biol Chem 274: 36107-36116.
    • (1999) J Biol Chem , vol.274 , pp. 36107-36116
    • Grabenhorst, E.1    Conradt, H.S.2
  • 34
    • 0028980860 scopus 로고
    • Sorting of yeast α 1,3 mannosyltransferase is mediated by a lumenal domain interaction, and a transmembrane domain signal that can confer clathrin-dependent golgi localization to a secreted protein
    • Graham TR, Krasnov VA. 1995. Sorting of yeast α 1,3 mannosyltransferase is mediated by a lumenal domain interaction, and a transmembrane domain signal that can confer clathrin-dependent golgi localization to a secreted protein. Mol Biol Cell 6: 809-824.
    • (1995) Mol Biol Cell , vol.6 , pp. 809-824
    • Graham, T.R.1    Krasnov, V.A.2
  • 35
    • 33750007916 scopus 로고    scopus 로고
    • Nucleotide-sugar transporters: Structure, function and roles in vivo
    • Handford M, Rodriguez-Furlan C, Orellana A. 2006. Nucleotide-sugar transporters: Structure, function and roles in vivo. Braz J Med Biol Res 39: 1149-1158.
    • (2006) Braz J Med Biol Res , vol.39 , pp. 1149-1158
    • Handford, M.1    Rodriguez-Furlan, C.2    Orellana, A.3
  • 36
    • 0037366707 scopus 로고    scopus 로고
    • (Arg)3 within the N-terminal domain of glucosidase I contains ER targeting information but is not required absolutely for ER localization
    • Hardt B, Kalz-Fuller B, Aparicio R, Volker C, Bause E. 2003. (Arg)3 within the N-terminal domain of glucosidase I contains ER targeting information but is not required absolutely for ER localization. Glycobiology 13: 159-168.
    • (2003) Glycobiology , vol.13 , pp. 159-168
    • Hardt, B.1    Kalz-Fuller, B.2    Aparicio, R.3    Volker, C.4    Bause, E.5
  • 37
    • 0029864907 scopus 로고    scopus 로고
    • Localization of a yeast early golgi mannosyltransferase, Och1p, involves retrograde transport
    • Harris SL, Waters MG. 1996. Localization of a yeast early golgi mannosyltransferase, Och1p, involves retrograde transport. J Cell Biol 132: 985-998.
    • (1996) J Cell Biol , vol.132 , pp. 985-998
    • Harris, S.L.1    Waters, M.G.2
  • 38
    • 13844252065 scopus 로고    scopus 로고
    • Generation of nonidentical compartments in vesicular transport systems
    • Heinrich R, Rapoport TA. 2005. Generation of nonidentical compartments in vesicular transport systems. J Cell Biol 168: 271-280.
    • (2005) J Cell Biol , vol.168 , pp. 271-280
    • Heinrich, R.1    Rapoport, T.A.2
  • 39
    • 64849104544 scopus 로고    scopus 로고
    • Mechanisms of transport through the golgi complex
    • Jackson CL. 2009. Mechanisms of transport through the golgi complex. J Cell Sci 122: 443-452.
    • (2009) J Cell Sci , vol.122 , pp. 443-452
    • Jackson, C.L.1
  • 40
    • 0032518685 scopus 로고    scopus 로고
    • Multi-protein complexes in the cis-golgi of saccharomyces cerevisiae with α-1,6-mannosyltransferase activity
    • Jungmann J, Munro S. 1998. Multi-protein complexes in the cis-golgi of saccharomyces cerevisiae with α-1,6-mannosyltransferase activity. EMBO J 17: 423-434.
    • (1998) EMBO J , vol.17 , pp. 423-434
    • Jungmann, J.1    Munro, S.2
  • 41
    • 70450224071 scopus 로고    scopus 로고
    • Toward a model for arf GTPases as regulators of traffic at the golgi
    • Kahn RA. 2009. Toward a model for arf GTPases as regulators of traffic at the golgi. FEBS Lett 583: 3872-3879.
    • (2009) FEBS Lett , vol.583 , pp. 3872-3879
    • Kahn, R.A.1
  • 42
    • 0034744535 scopus 로고    scopus 로고
    • Overexpression of HUT1 gene stimulates in vivo galactosylation by enhancing UDP-galactose transport activity in saccharomyces cerevisiae
    • Kainuma M, Chiba Y, Takeuchi M, Jigami Y. 2001. Overexpression of HUT1 gene stimulates in vivo galactosylation by enhancing UDP-galactose transport activity in saccharomyces cerevisiae. Yeast 18: 533-541.
    • (2001) Yeast , vol.18 , pp. 533-541
    • Kainuma, M.1    Chiba, Y.2    Takeuchi, M.3    Jigami, Y.4
  • 43
    • 44449113179 scopus 로고    scopus 로고
    • Ypt1p is essential for retrograde golgi-ER transport and for golgi maintenance in S. cerevisiae
    • Kamena F, Diefenbacher M, Kilchert C, Schwarz H, Spang A. 2008. Ypt1p is essential for retrograde golgi-ER transport and for golgi maintenance in S. cerevisiae. J Cell Sci 121: 1293-1302.
    • (2008) J Cell Sci , vol.121 , pp. 1293-1302
    • Kamena, F.1    Diefenbacher, M.2    Kilchert, C.3    Schwarz, H.4    Spang, A.5
  • 45
    • 0033218180 scopus 로고    scopus 로고
    • Interaction among the subunits of golgi membrane mannosyltransferase complexes of the yeast saccharomyces cerevisiae
    • Kojima H, Hashimoto H, Yoda K. 1999. Interaction among the subunits of golgi membrane mannosyltransferase complexes of the yeast saccharomyces cerevisiae. Biosci Biotechnol Biochem 63: 1970-1976.
    • (1999) Biosci Biotechnol Biochem , vol.63 , pp. 1970-1976
    • Kojima, H.1    Hashimoto, H.2    Yoda, K.3
  • 46
    • 65849343376 scopus 로고    scopus 로고
    • Association of β-1,3-N-acetylglucosaminyltransferase 1 and β-1,4-galactosyltransferase 1, trans-golgi enzymes involved in coupled poly-N-acetyllactosamine synthesis
    • Lee PL, Kohler JJ, Pfeffer SR. 2009. Association of β-1,3-N-acetylglucosaminyltransferase 1 and β-1,4-galactosyltransferase 1, trans-golgi enzymes involved in coupled poly-N-acetyllactosamine synthesis. Glycobiology 19: 655-664.
    • (2009) Glycobiology , vol.19 , pp. 655-664
    • Lee, P.L.1    Kohler, J.J.2    Pfeffer, S.R.3
  • 49
    • 77952934647 scopus 로고    scopus 로고
    • Lipids and cholesterol as regulators of traffic in the endomembrane system
    • Lippincott-Schwartz J, Phair RD. 2010. Lipids and cholesterol as regulators of traffic in the endomembrane system. Annu Rev Biophys 39: 559-578.
    • (2010) Annu Rev Biophys , vol.39 , pp. 559-578
    • Lippincott-Schwartz, J.1    Phair, R.D.2
  • 50
    • 58149177285 scopus 로고    scopus 로고
    • Structure and membrane interaction of myristoylated ARF1
    • Liu Y, Kahn RA, Prestegard JH. 2009. Structure and membrane interaction of myristoylated ARF1. Structure 17: 79-87.
    • (2009) Structure , vol.17 , pp. 79-87
    • Liu, Y.1    Kahn, R.A.2    Prestegard, J.H.3
  • 51
    • 0028832626 scopus 로고
    • Localization and targeting of the saccharomyces cerevisiae Kre2p/Mnt1p α 1,2-mannosyltransferase to a medial-golgi compartment
    • Lussier M, Sdicu AM, Ketela T, Bussey H. 1995. Localization and targeting of the saccharomyces cerevisiae Kre2p/Mnt1p α 1,2-mannosyltransferase to a medial-golgi compartment. J Cell Biol 131: 913-927.
    • (1995) J Cell Biol , vol.131 , pp. 913-927
    • Lussier, M.1    Sdicu, A.M.2    Ketela, T.3    Bussey, H.4
  • 52
    • 0025946217 scopus 로고
    • Golgi retention signals: Do membranes hold the key?
    • Machamer CE. 1991. Golgi retention signals: Do membranes hold the key? Trends Cell Biol 1: 141-144.
    • (1991) Trends Cell Biol , vol.1 , pp. 141-144
    • Machamer, C.E.1
  • 53
    • 0027227549 scopus 로고
    • Retention of a cis-golgi protein requires polar residues on one face of a predicted α-helix in the transmembrane domain
    • Machamer CE, Grim MG, Esquela A, Chung SW, Rolls M, Ryan K, Swift AM. 1993. Retention of a cis-golgi protein requires polar residues on one face of a predicted α-helix in the transmembrane domain. Mol Biol Cell 4: 695-704.
    • (1993) Mol Biol Cell , vol.4 , pp. 695-704
    • Machamer, C.E.1    Grim, M.G.2    Esquela, A.3    Chung, S.W.4    Rolls, M.5    Ryan, K.6    Swift, A.M.7
  • 54
    • 34247579058 scopus 로고    scopus 로고
    • The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope
    • Mancias JD, Goldberg J. 2007. The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope. Mol Cell 26: 403-414.
    • (2007) Mol Cell , vol.26 , pp. 403-414
    • Mancias, J.D.1    Goldberg, J.2
  • 55
    • 80052538111 scopus 로고    scopus 로고
    • Signaling at the Golgi
    • doi:10.1101/cshperspect.a005314
    • Mayinger P. 2011. Signaling at the Golgi. Cold Spring Harb Perspect Biol doi:10.1101/cshperspect.a005314.
    • (2011) Cold Spring Harb Perspect Biol
    • Mayinger, P.1
  • 56
    • 0034681139 scopus 로고    scopus 로고
    • The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the golgi apparatus and catalyzes the synthesis of heparan sulfate
    • McCormick C, Duncan G, Goutsos KT, Tufaro F. 2000. The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci 97: 668-673.
    • (2000) Proc Natl Acad Sci , vol.97 , pp. 668-673
    • McCormick, C.1    Duncan, G.2    Goutsos, K.T.3    Tufaro, F.4
  • 58
    • 30944461855 scopus 로고    scopus 로고
    • Hide and run. Arginine-based endoplasmic-reticulum-sorting motifs in the assembly of heteromultimeric membrane proteins
    • Michelsen K, Yuan H, Schwappach B. 2005. Hide and run. Arginine-based endoplasmic-reticulum-sorting motifs in the assembly of heteromultimeric membrane proteins. EMBO Rep 6: 717-722.
    • (2005) EMBO Rep , vol.6 , pp. 717-722
    • Michelsen, K.1    Yuan, H.2    Schwappach, B.3
  • 59
    • 0035853832 scopus 로고    scopus 로고
    • The cytoplasmic tail of α 1,2-fucosyltransferase contains a sequence for golgi localization
    • Milland J, Taylor SG, Dodson HC, McKenzie IF, Sandrin MS. 2001. The cytoplasmic tail of α 1,2-fucosyltransferase contains a sequence for golgi localization. J Biol Chem 276: 12012-12018.
    • (2001) J Biol Chem , vol.276 , pp. 12012-12018
    • Milland, J.1    Taylor, S.G.2    Dodson, H.C.3    McKenzie, I.F.4    Sandrin, M.S.5
  • 60
    • 36549042931 scopus 로고    scopus 로고
    • A SNARE-adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles
    • Miller SE, Collins BM, McCoy AJ, Robinson MS, Owen DJ. 2007. A SNARE-adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles. Nature 450: 570-574.
    • (2007) Nature , vol.450 , pp. 570-574
    • Miller, S.E.1    Collins, B.M.2    McCoy, A.J.3    Robinson, M.S.4    Owen, D.J.5
  • 61
    • 0043029286 scopus 로고    scopus 로고
    • SNARE selectivity of the COPII coat
    • Mossessova E, Bickford LC, Goldberg J. 2003. SNARE selectivity of the COPII coat. Cell 114: 483-495.
    • (2003) Cell , vol.114 , pp. 483-495
    • Mossessova, E.1    Bickford, L.C.2    Goldberg, J.3
  • 62
    • 0025990802 scopus 로고
    • Sequences within and adjacent to the transmembrane segment of α-2,6-sialyltransferase specify golgi retention
    • Munro S. 1991. Sequences within and adjacent to the transmembrane segment of α-2,6-sialyltransferase specify golgi retention. EMBO J 10: 3577-3588.
    • (1991) EMBO J , vol.10 , pp. 3577-3588
    • Munro, S.1
  • 63
    • 0029133322 scopus 로고
    • A comparison of the transmembrane domains of golgi and plasma membrane proteins
    • Munro S. 1995a. A comparison of the transmembrane domains of golgi and plasma membrane proteins. Biochem Soc Trans 23: 527-530.
    • (1995) Biochem Soc Trans , vol.23 , pp. 527-530
    • Munro, S.1
  • 64
    • 0029165107 scopus 로고
    • An investigation of the role of transmembrane domains in golgi protein retention
    • Munro S. 1995b. An investigation of the role of transmembrane domains in golgi protein retention. EMBO J 14: 4695-4704.
    • (1995) EMBO J , vol.14 , pp. 4695-4704
    • Munro, S.1
  • 65
    • 0031976015 scopus 로고    scopus 로고
    • Localization of proteins to the golgi apparatus
    • Munro S. 1998. Localization of proteins to the golgi apparatus. Trends Cell Biol 8: 11-15.
    • (1998) Trends Cell Biol , vol.8 , pp. 11-15
    • Munro, S.1
  • 67
    • 0026072695 scopus 로고
    • The membrane spanning domain of β-1,4-galactosyltransferase specifies trans-golgi localization
    • Nilsson T, Lucocq JM, Mackay D, Warren G. 1991. The membrane spanning domain of β-1,4-galactosyltransferase specifies trans-golgi localization. EMBO J 10: 3567-3575.
    • (1991) EMBO J , vol.10 , pp. 3567-3575
    • Nilsson, T.1    Lucocq, J.M.2    Mackay, D.3    Warren, G.4
  • 68
    • 0027318045 scopus 로고
    • Kin recognition. A model for the retention of golgi enzymes
    • Nilsson T, Slusarewicz P, HoeMH, Warren G. 1993a. Kin recognition. A model for the retention of golgi enzymes. FEBS Lett 330: 1-4.
    • (1993) FEBS Lett , vol.330 , pp. 1-4
    • Nilsson, T.1    Slusarewicz, P.2    Hoe, M.H.3    Warren, G.4
  • 69
    • 0029890064 scopus 로고    scopus 로고
    • The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the golgi apparatus in HeLa cells
    • Nilsson T, Rabouille C, Hui N, Watson R, Warren G. 1996. The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the golgi apparatus in HeLa cells. J Cell Sci 109 (Pt 7): 1975-1989.
    • (1996) J Cell Sci , vol.109 , Issue.Pt 7 , pp. 1975-1989
    • Nilsson, T.1    Rabouille, C.2    Hui, N.3    Watson, R.4    Warren, G.5
  • 70
    • 0027472941 scopus 로고
    • Overlapping distribution of two glycosyltransferases in the golgi apparatus of HeLa cells
    • Nilsson T, Pypaert M, Hoe MH, Slusarewicz P, Berger EG, Warren G. 1993b. Overlapping distribution of two glycosyltransferases in the golgi apparatus of HeLa cells. J Cell Biol 120: 5-13.
    • (1993) J Cell Biol , vol.120 , pp. 5-13
    • Nilsson, T.1    Pypaert, M.2    Hoe, M.H.3    Slusarewicz, P.4    Berger, E.G.5    Warren, G.6
  • 72
    • 41449115539 scopus 로고    scopus 로고
    • The cytoplasmic region of α-1,6-mannosyltransferase Mnn9p is crucial for retrograde transport from the golgi apparatus to the endoplasmic reticulum in saccharomyces cerevisiae
    • Okamoto M, Yoko-o T, Miyakawa T, Jigami Y. 2008. The cytoplasmic region of α-1,6-mannosyltransferase Mnn9p is crucial for retrograde transport from the golgi apparatus to the endoplasmic reticulum in saccharomyces cerevisiae. Eukaryot Cell 7: 310-318.
    • (2008) Eukaryot Cell , vol.7 , pp. 310-318
    • Okamoto, M.1    Yoko-o, T.2    Miyakawa, T.3    Jigami, Y.4
  • 73
    • 0034697118 scopus 로고    scopus 로고
    • Medial golgi but not late golgi glycosyltransferases exist as high molecular weight complexes. Role of luminal domain in complex formation and localization
    • Opat AS, Houghton F, Gleeson PA. 2000. Medial golgi but not late golgi glycosyltransferases exist as high molecular weight complexes. Role of luminal domain in complex formation and localization. J Biol Chem 275: 11836-11845.
    • (2000) J Biol Chem , vol.275 , pp. 11836-11845
    • Opat, A.S.1    Houghton, F.2    Gleeson, P.A.3
  • 74
    • 0034844091 scopus 로고    scopus 로고
    • Trafficking and localisation of resident golgi glycosylation enzymes
    • Opat AS, van Vliet C, Gleeson PA. 2001. Trafficking and localisation of resident golgi glycosylation enzymes. Biochimie 83: 763-773.
    • (2001) Biochimie , vol.83 , pp. 763-773
    • Opat, A.S.1    van Vliet, C.2    Gleeson, P.A.3
  • 75
    • 0027467275 scopus 로고
    • Budding from golgi membranes requires the coatomer complex of non-clathrin coat proteins
    • Orci L, Palmer DJ, Ravazzola M, Perrelet A, Amherdt M, Rothman JE. 1993. Budding from golgi membranes requires the coatomer complex of non-clathrin coat proteins. Nature 362: 648-652.
    • (1993) Nature , vol.362 , pp. 648-652
    • Orci, L.1    Palmer, D.J.2    Ravazzola, M.3    Perrelet, A.4    Amherdt, M.5    Rothman, J.E.6
  • 76
    • 0030472766 scopus 로고    scopus 로고
    • Switching amino-terminal cytoplasmic domains of α(1,2)fucosyltransferase and α(1,3)galactosyltransferase alters the expression of H substance and galα(1,3)gal
    • Osman N, McKenzie IF, Mouhtouris E, Sandrin MS. 1996. Switching amino-terminal cytoplasmic domains of α(1,2)fucosyltransferase and α(1,3)galactosyltransferase alters the expression of H substance and galα(1,3)gal. J Biol Chem 271: 33105-33109.
    • (1996) J Biol Chem , vol.271 , pp. 33105-33109
    • Osman, N.1    McKenzie, I.F.2    Mouhtouris, E.3    Sandrin, M.S.4
  • 77
    • 0342470378 scopus 로고    scopus 로고
    • Yeast ER-golgi v-SNAREs Bos1p and Bet1p differ in steadystate localization and targeting
    • Ossipov D, Schroder-Kohne S, Schmitt HD. 1999. Yeast ER-golgi v-SNAREs Bos1p and Bet1p differ in steadystate localization and targeting. J Cell Sci 112 (Pt 22): 4135-4142.
    • (1999) J Cell Sci , vol.112 , Issue.Pt 22 , pp. 4135-4142
    • Ossipov, D.1    Schroder-Kohne, S.2    Schmitt, H.D.3
  • 78
    • 0027263507 scopus 로고
    • Binding of coatomer to golgi membranes requires ADP-ribosylation factor
    • Palmer DJ, Helms JB, Beckers CJ, Orci L, Rothman JE. 1993. Binding of coatomer to golgi membranes requires ADP-ribosylation factor. J Biol Chem 268: 12083-12089.
    • (1993) J Biol Chem , vol.268 , pp. 12083-12089
    • Palmer, D.J.1    Helms, J.B.2    Beckers, C.J.3    Orci, L.4    Rothman, J.E.5
  • 80
    • 70450223884 scopus 로고    scopus 로고
    • Multiple routes of protein transport from endosomes to the trans-golgi network
    • Pfeffer SR. 2009. Multiple routes of protein transport from endosomes to the trans-golgi network. FEBS Lett 583: 3811-3816.
    • (2009) FEBS Lett , vol.583 , pp. 3811-3816
    • Pfeffer, S.R.1
  • 82
    • 0035800822 scopus 로고    scopus 로고
    • Location and mechanism of α 2,6-sialyltransferase dimer formation. Role of cysteine residues in enzyme dimerization, localization, activity, and processing
    • Qian R, Chen C, Colley KJ. 2001. Location and mechanism of α 2,6-sialyltransferase dimer formation. Role of cysteine residues in enzyme dimerization, localization, activity, and processing. J Biol Chem 276: 28641-28649.
    • (2001) J Biol Chem , vol.276 , pp. 28641-28649
    • Qian, R.1    Chen, C.2    Colley, K.J.3
  • 83
    • 0037193471 scopus 로고    scopus 로고
    • ARF-GAP-mediated interaction between the ER-golgi v-SNAREs and the COPI coat
    • Rein U, Andag U, Duden R, Schmitt HD, Spang A. 2002. ARF-GAP-mediated interaction between the ER-golgi v-SNAREs and the COPI coat. J Cell Biol 157: 395-404.
    • (2002) J Cell Biol , vol.157 , pp. 395-404
    • Rein, U.1    Andag, U.2    Duden, R.3    Schmitt, H.D.4    Spang, A.5
  • 84
    • 65549131351 scopus 로고    scopus 로고
    • Elevated golgi pH impairs terminal N-glycosylation by inducing mislocalization of golgi glycosyltransferases
    • Rivinoja A, Hassinen A, Kokkonen N, Kauppila A, Kellokumpu S. 2009. Elevated golgi pH impairs terminal N-glycosylation by inducing mislocalization of golgi glycosyltransferases. J Cell Physiol 220: 144-154.
    • (2009) J Cell Physiol , vol.220 , pp. 144-154
    • Rivinoja, A.1    Hassinen, A.2    Kokkonen, N.3    Kauppila, A.4    Kellokumpu, S.5
  • 86
    • 0030731272 scopus 로고    scopus 로고
    • Cholesterol-independent targeting of golgi membrane proteins in insect cells
    • Rolls MM, Marquardt MT, Kielian M, Machamer CE. 1997. Cholesterol-independent targeting of golgi membrane proteins in insect cells. Mol Biol Cell 8: 2111-2118.
    • (1997) Mol Biol Cell , vol.8 , pp. 2111-2118
    • Rolls, M.M.1    Marquardt, M.T.2    Kielian, M.3    Machamer, C.E.4
  • 87
    • 56149091013 scopus 로고    scopus 로고
    • The TRAPP complex: Insights into its architecture and function
    • Sacher M, Kim YG, Lavie A, Oh BH, Segev N. 2008. The TRAPP complex: Insights into its architecture and function. Traffic 9: 2032-2042.
    • (2008) Traffic , vol.9 , pp. 2032-2042
    • Sacher, M.1    Kim, Y.G.2    Lavie, A.3    Oh, B.H.4    Segev, N.5
  • 88
    • 0842287521 scopus 로고    scopus 로고
    • Protein localization in the plant golgi apparatus and the transgolgi network
    • Saint-Jore-Dupas C, Gomord V, Paris N. 2004. Protein localization in the plant golgi apparatus and the transgolgi network. Cell Mol Life Sci 61: 159-171.
    • (2004) Cell Mol Life Sci , vol.61 , pp. 159-171
    • Saint-Jore-Dupas, C.1    Gomord, V.2    Paris, N.3
  • 90
    • 0036329213 scopus 로고    scopus 로고
    • Emp47p and its close homolog Emp46p have a tyrosine-containing endoplasmic reticulum exit signal and function in glycoprotein secretion in saccharomyces cerevisiae
    • Sato K, Nakano A. 2002. Emp47p and its close homolog Emp46p have a tyrosine-containing endoplasmic reticulum exit signal and function in glycoprotein secretion in saccharomyces cerevisiae. Mol Biol Cell 13: 2518-2532.
    • (2002) Mol Biol Cell , vol.13 , pp. 2518-2532
    • Sato, K.1    Nakano, A.2
  • 91
    • 0035809932 scopus 로고    scopus 로고
    • Rer1p, a retrieval receptor for endoplasmic reticulum membrane proteins, is dynamically localized to the golgi apparatus by coatomer
    • Sato K, Sato M, Nakano A. 2001. Rer1p, a retrieval receptor for endoplasmic reticulum membrane proteins, is dynamically localized to the golgi apparatus by coatomer. J Cell Biol 152: 935-944.
    • (2001) J Cell Biol , vol.152 , pp. 935-944
    • Sato, K.1    Sato, M.2    Nakano, A.3
  • 92
    • 52649182178 scopus 로고    scopus 로고
    • The transmembrane domain of the severe acute respiratory syndrome coronavirus ORF7b protein is necessary and sufficient for its retention in the golgi complex
    • Schaecher SR, Diamond MS, Pekosz A. 2008. The transmembrane domain of the severe acute respiratory syndrome coronavirus ORF7b protein is necessary and sufficient for its retention in the golgi complex. J Virol 82: 9477-9491.
    • (2008) J Virol , vol.82 , pp. 9477-9491
    • Schaecher, S.R.1    Diamond, M.S.2    Pekosz, A.3
  • 93
    • 33845428100 scopus 로고    scopus 로고
    • Transition of galactosyltransferase 1 from trans-golgi cisterna to the trans-golgi network is signal mediated
    • Schaub BE, Berger B, Berger EG, Rohrer J. 2006. Transition of galactosyltransferase 1 from trans-golgi cisterna to the trans-golgi network is signal mediated. Mol Biol Cell 17: 5153-5162.
    • (2006) Mol Biol Cell , vol.17 , pp. 5153-5162
    • Schaub, B.E.1    Berger, B.2    Berger, E.G.3    Rohrer, J.4
  • 94
    • 34547801651 scopus 로고    scopus 로고
    • Interaction of SNAREs with ArfGAPs precedes recruitment of Sec18p/NSF
    • Schindler C, Spang A. 2007. Interaction of SNAREs with ArfGAPs precedes recruitment of Sec18p/NSF. Mol Biol Cell 18: 2852-2863.
    • (2007) Mol Biol Cell , vol.18 , pp. 2852-2863
    • Schindler, C.1    Spang, A.2
  • 95
    • 77952554428 scopus 로고    scopus 로고
    • Dsl1p/Zw10: Common mechanisms behind tethering vesicles and microtubules
    • Schmitt HD. 2010. Dsl1p/Zw10: Common mechanisms behind tethering vesicles and microtubules. Trends Cell Biol 20: 257-268.
    • (2010) Trends Cell Biol , vol.20 , pp. 257-268
    • Schmitt, H.D.1
  • 97
    • 0028840671 scopus 로고
    • The golgi-localization of yeast Emp47p depends on its di-lysine motif but is not affected by the ret1-1 mutation in α-COP
    • Schroder S, Schimmoller F, Singer-Kruger B, Riezman H. 1995. The golgi-localization of yeast Emp47p depends on its di-lysine motif but is not affected by the ret1-1 mutation in α-COP. J Cell Biol 131: 895-912.
    • (1995) J Cell Biol , vol.131 , pp. 895-912
    • Schroder, S.1    Schimmoller, F.2    Singer-Kruger, B.3    Riezman, H.4
  • 98
    • 0028349810 scopus 로고
    • An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum
    • SchutzeMP, Peterson PA, Jackson MR. 1994. An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. EMBO J 13: 1696-1705.
    • (1994) EMBO J , vol.13 , pp. 1696-1705
    • Schutze, M.P.1    Peterson, P.A.2    Jackson, M.R.3
  • 99
    • 77950974131 scopus 로고    scopus 로고
    • Signaling from the golgi: Mechanisms and models for golgi phosphoprotein 3-mediated oncogenesis
    • Scott KL, Chin L. 2010. Signaling from the golgi: Mechanisms and models for golgi phosphoprotein 3-mediated oncogenesis. Clin Cancer Res 16: 2229-2234.
    • (2010) Clin Cancer Res , vol.16 , pp. 2229-2234
    • Scott, K.L.1    Chin, L.2
  • 101
    • 2342497804 scopus 로고    scopus 로고
    • Golgi targeting of ARF-like GTPase Arl3p requires its nα-acetylation and the integral membrane protein Sys1p
    • Setty SR, Strochlic TI, Tong AH, Boone C, Burd CG. 2004. Golgi targeting of ARF-like GTPase Arl3p requires its nα-acetylation and the integral membrane protein Sys1p. Nat Cell Biol 6: 414-419.
    • (2004) Nat Cell Biol , vol.6 , pp. 414-419
    • Setty, S.R.1    Strochlic, T.I.2    Tong, A.H.3    Boone, C.4    Burd, C.G.5
  • 102
    • 77955391360 scopus 로고    scopus 로고
    • Endoplasmic reticulum protein targeting of phospholamban: A common role for an Nterminal di-arginine motif in ER retention?
    • Sharma P, Ignatchenko V, Grace K, Ursprung C, Kislinger T, Gramolini AO. 2010. Endoplasmic reticulum protein targeting of phospholamban: A common role for an Nterminal di-arginine motif in ER retention? PLoS One 5: e11496.
    • (2010) PLoS One , vol.5
    • Sharma, P.1    Ignatchenko, V.2    Grace, K.3    Ursprung, C.4    Kislinger, T.5    Gramolini, A.O.6
  • 103
    • 77954299061 scopus 로고    scopus 로고
    • A comprehensive comparison of transmembrane domains reveals organelle-specific properties
    • Sharpe HJ, Stevens TJ, Munro S. 2010. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142: 158-169.
    • (2010) Cell , vol.142 , pp. 158-169
    • Sharpe, H.J.1    Stevens, T.J.2    Munro, S.3
  • 104
    • 45049084097 scopus 로고    scopus 로고
    • Role of the conserved oligomeric golgi (COG) complex in protein glycosylation
    • Smith RD, Lupashin VV. 2008. Role of the conserved oligomeric golgi (COG) complex in protein glycosylation. Carbohydr Res 343: 2024-2031.
    • (2008) Carbohydr Res , vol.343 , pp. 2024-2031
    • Smith, R.D.1    Lupashin, V.V.2
  • 105
    • 0037470039 scopus 로고    scopus 로고
    • Importance of cys, gln, and tyr from the transmembrane domain of human α 3/4 fucosyltransferase III for its localization and sorting in the golgi of baby hamster kidney cells
    • Sousa VL, Brito C, Costa T, Lanoix J, Nilsson T, Costa J. 2003. Importance of cys, gln, and tyr from the transmembrane domain of human α 3/4 fucosyltransferase III for its localization and sorting in the golgi of baby hamster kidney cells. J Biol Chem 278: 7624-7629.
    • (2003) J Biol Chem , vol.278 , pp. 7624-7629
    • Sousa, V.L.1    Brito, C.2    Costa, T.3    Lanoix, J.4    Nilsson, T.5    Costa, J.6
  • 106
    • 0032517823 scopus 로고    scopus 로고
    • Recycling of golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced golgi scattering
    • Storrie B, White J, Rottger S, Stelzer EH, Suganuma T, Nilsson T. 1998. Recycling of golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced golgi scattering. J Cell Biol 143: 1505-1521.
    • (1998) J Cell Biol , vol.143 , pp. 1505-1521
    • Storrie, B.1    White, J.2    Rottger, S.3    Stelzer, E.H.4    Suganuma, T.5    Nilsson, T.6
  • 107
    • 0026686809 scopus 로고
    • The transmembrane domain of N-glucosaminyltransferase I contains a golgi retention signal
    • Tang BL, Wong SH, Low SH, Hong W. 1992. The transmembrane domain of N-glucosaminyltransferase I contains a golgi retention signal. J Biol Chem 267: 10122-10126.
    • (1992) J Biol Chem , vol.267 , pp. 10122-10126
    • Tang, B.L.1    Wong, S.H.2    Low, S.H.3    Hong, W.4
  • 108
    • 0029778556 scopus 로고    scopus 로고
    • Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the golgi apparatus
    • Teasdale RD, Jackson MR. 1996. Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the golgi apparatus. Annu Rev Cell Dev Biol 12: 27-54.
    • (1996) Annu Rev Cell Dev Biol , vol.12 , pp. 27-54
    • Teasdale, R.D.1    Jackson, M.R.2
  • 109
    • 0026776288 scopus 로고
    • The signal for golgi retention of bovine β 1,4-galactosyltransferase is in the transmembrane domain
    • Teasdale RD, D'Agostaro G, Gleeson PA. 1992. The signal for golgi retention of bovine β 1,4-galactosyltransferase is in the transmembrane domain. J Biol Chem 267: 13113.
    • (1992) J Biol Chem , vol.267 , pp. 13113
    • Teasdale, R.D.1    D'Agostaro, G.2    Gleeson, P.A.3
  • 110
    • 0034610338 scopus 로고    scopus 로고
    • Active recycling of yeast golgi mannosyltransferase complexes through the endoplasmic reticulum
    • Todorow Z, Spang A, Carmack E, Yates J, Schekman R. 2000. Active recycling of yeast golgi mannosyltransferase complexes through the endoplasmic reticulum. Proc Natl Acad Sci 97: 13643-13648.
    • (2000) Proc Natl Acad Sci , vol.97 , pp. 13643-13648
    • Todorow, Z.1    Spang, A.2    Carmack, E.3    Yates, J.4    Schekman, R.5
  • 111
    • 73749085462 scopus 로고    scopus 로고
    • Localization of golgi-resident glycosyltransferases
    • Tu L, Banfield DK. 2010. Localization of golgi-resident glycosyltransferases. Cell Mol Life Sci 67: 29-41.
    • (2010) Cell Mol Life Sci , vol.67 , pp. 29-41
    • Tu, L.1    Banfield, D.K.2
  • 112
    • 47749141468 scopus 로고    scopus 로고
    • Signal-mediated dynamic retention of glycosyltransferases in the golgi
    • Tu L, Tai WC, Chen L, Banfield DK. 2008. Signal-mediated dynamic retention of glycosyltransferases in the golgi. Science 321: 404-407.
    • (2008) Science , vol.321 , pp. 404-407
    • Tu, L.1    Tai, W.C.2    Chen, L.3    Banfield, D.K.4
  • 113
    • 67650465555 scopus 로고    scopus 로고
    • The cytoplasmic tail of GM3 synthase defines its subcellular localization, stability, and in vivo activity
    • Uemura S, Yoshida S, Shishido F, Inokuchi J. 2009. The cytoplasmic tail of GM3 synthase defines its subcellular localization, stability, and in vivo activity. Mol Biol Cell 20: 3088-3100.
    • (2009) Mol Biol Cell , vol.20 , pp. 3088-3100
    • Uemura, S.1    Yoshida, S.2    Shishido, F.3    Inokuchi, J.4
  • 114
    • 33745844491 scopus 로고    scopus 로고
    • Cytoplasmic tails of SialT2 and GalNAcT impose their respective proximal and distal golgi localization
    • Uliana AS, Giraudo CG, Maccioni HJ. 2006. Cytoplasmic tails of SialT2 and GalNAcT impose their respective proximal and distal golgi localization. Traffic 7: 604-612.
    • (2006) Traffic , vol.7 , pp. 604-612
    • Uliana, A.S.1    Giraudo, C.G.2    Maccioni, H.J.3
  • 116
    • 0027248612 scopus 로고
    • Oligomerization of a membrane protein correlates with its retention in the golgi complex
    • Weisz OA, Swift AM, Machamer CE. 1993. Oligomerization of a membrane protein correlates with its retention in the golgi complex. J Cell Biol 122: 1185-1196.
    • (1993) J Cell Biol , vol.122 , pp. 1185-1196
    • Weisz, O.A.1    Swift, A.M.2    Machamer, C.E.3
  • 117
    • 0026598516 scopus 로고
    • The 17-residue transmembrane domain of β-galactoside α 2,6-sialyltransferase is sufficient for golgi retention
    • Wong SH, Low SH, Hong W. 1992. The 17-residue transmembrane domain of β-galactoside α 2,6-sialyltransferase is sufficient for golgi retention. J Cell Biol 117: 245-258.
    • (1992) J Cell Biol , vol.117 , pp. 245-258
    • Wong, S.H.1    Low, S.H.2    Hong, W.3
  • 118
    • 76149142505 scopus 로고    scopus 로고
    • PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde golgi trafficking
    • Wood CS, Schmitz KR, Bessman NJ, Setty TG, Ferguson KM, Burd CG. 2009. PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde golgi trafficking. J Cell Biol 187: 967-975.
    • (2009) J Cell Biol , vol.187 , pp. 967-975
    • Wood, C.S.1    Schmitz, K.R.2    Bessman, N.J.3    Setty, T.G.4    Ferguson, K.M.5    Burd, C.G.6
  • 119
    • 0031665836 scopus 로고    scopus 로고
    • The dynamics of golgi protein traffic visualized in living yeast cells
    • Wooding S, Pelham HR. 1998. The dynamics of golgi protein traffic visualized in living yeast cells. Mol Biol Cell 9: 2667-2680.
    • (1998) Mol Biol Cell , vol.9 , pp. 2667-2680
    • Wooding, S.1    Pelham, H.R.2
  • 121
    • 0036005794 scopus 로고    scopus 로고
    • The cytosolic and transmembrane domains of the β 1,6 N-acetylglucosaminyltransferase (C2GnT) function as a cis to medial/Golgi-targeting determinant
    • Zerfaoui M, Fukuda M, Langlet C, Mathieu S, Suzuki M, LombardoD, El-Battari A. 2002. The cytosolic and transmembrane domains of the β 1,6 N-acetylglucosaminyltransferase (C2GnT) function as a cis to medial/Golgi-targeting determinant. Glycobiology 12: 15-24.
    • (2002) Glycobiology , vol.12 , pp. 15-24
    • Zerfaoui, M.1    Fukuda, M.2    Langlet, C.3    Mathieu, S.4    Suzuki, M.5    Lombardo, D.6    El-Battari, A.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.