메뉴 건너뛰기




Volumn 20, Issue 5, 2010, Pages 257-268

Dsl1p/Zw10: Common mechanisms behind tethering vesicles and microtubules

Author keywords

[No Author keywords available]

Indexed keywords

COAT PROTEIN; COAT PROTEIN 1; FUNGAL PROTEIN; PROTEIN DSL1P; PROTEIN ZW10; SNARE PROTEIN; UNCLASSIFIED DRUG;

EID: 77952554428     PISSN: 09628924     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tcb.2010.02.001     Document Type: Review
Times cited : (46)

References (86)
  • 1
    • 0842324801 scopus 로고    scopus 로고
    • The mechanisms of vesicle budding and fusion
    • Bonifacino J.S., Glick B.S. The mechanisms of vesicle budding and fusion. Cell 2004, 116:153-166.
    • (2004) Cell , vol.116 , pp. 153-166
    • Bonifacino, J.S.1    Glick, B.S.2
  • 2
    • 34248227351 scopus 로고    scopus 로고
    • Rab cascades and tethering factors in the endomembrane system
    • Markgraf D.F., et al. Rab cascades and tethering factors in the endomembrane system. FEBS Lett. 2007, 581:2125-2130.
    • (2007) FEBS Lett. , vol.581 , pp. 2125-2130
    • Markgraf, D.F.1
  • 4
    • 3543096759 scopus 로고    scopus 로고
    • Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution
    • Sutton R.B., et al. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 1998, 395:347-353.
    • (1998) Nature , vol.395 , pp. 347-353
    • Sutton, R.B.1
  • 5
    • 0035279058 scopus 로고    scopus 로고
    • SNAREs and the specificity of membrane fusion
    • Pelham H.R. SNAREs and the specificity of membrane fusion. Trends Cell Biol. 2001, 11:99-101.
    • (2001) Trends Cell Biol. , vol.11 , pp. 99-101
    • Pelham, H.R.1
  • 6
    • 0033985393 scopus 로고    scopus 로고
    • Yeast Golgi SNARE interactions are promiscuous
    • Tsui M.M., Banfield D.K. Yeast Golgi SNARE interactions are promiscuous. J. Cell. Sci. 2000, 113:145-152.
    • (2000) J. Cell. Sci. , vol.113 , pp. 145-152
    • Tsui, M.M.1    Banfield, D.K.2
  • 7
    • 34247623568 scopus 로고    scopus 로고
    • Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle
    • Cai H.Q., et al. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 2007, 12:671-682.
    • (2007) Dev. Cell , vol.12 , pp. 671-682
    • Cai, H.Q.1
  • 8
    • 42049109308 scopus 로고    scopus 로고
    • Diversity in structure and function of tethering complexes: evidence for different mechanisms in vesicular transport regulation
    • Kümmel D., Heinemann U. Diversity in structure and function of tethering complexes: evidence for different mechanisms in vesicular transport regulation. Curr. Protein Pept. Sci. 2008, 9:197-209.
    • (2008) Curr. Protein Pept. Sci. , vol.9 , pp. 197-209
    • Kümmel, D.1    Heinemann, U.2
  • 9
    • 0036629335 scopus 로고    scopus 로고
    • Vesicle tethering complexes in membrane traffic
    • Whyte J.R., Munro S. Vesicle tethering complexes in membrane traffic. J. Cell. Sci. 2002, 115:2627-2637.
    • (2002) J. Cell. Sci. , vol.115 , pp. 2627-2637
    • Whyte, J.R.1    Munro, S.2
  • 11
    • 70450223107 scopus 로고    scopus 로고
    • Role of vesicle tethering factors in the ER-Golgi membrane traffic
    • Sztul E., Lupashin V. Role of vesicle tethering factors in the ER-Golgi membrane traffic. FEBS Lett. 2009, 583:3770-3783.
    • (2009) FEBS Lett. , vol.583 , pp. 3770-3783
    • Sztul, E.1    Lupashin, V.2
  • 12
    • 34247568898 scopus 로고    scopus 로고
    • The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis
    • Peplowska K., et al. The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. Dev. Cell 2007, 12:739-750.
    • (2007) Dev. Cell , vol.12 , pp. 739-750
    • Peplowska, K.1
  • 13
    • 0033622037 scopus 로고    scopus 로고
    • Identification and characterization of five new subunits of TRAPP
    • Sacher M., et al. Identification and characterization of five new subunits of TRAPP. Eur. J. Cell Biol. 2000, 79:71-80.
    • (2000) Eur. J. Cell Biol. , vol.79 , pp. 71-80
    • Sacher, M.1
  • 14
    • 33750799403 scopus 로고    scopus 로고
    • The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering
    • Kim Y.G., et al. The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering. Cell 2006, 127:817-830.
    • (2006) Cell , vol.127 , pp. 817-830
    • Kim, Y.G.1
  • 15
    • 33745841364 scopus 로고    scopus 로고
    • The exocyst defrocked, a framework of rods revealed
    • Munson M., Novick P. The exocyst defrocked, a framework of rods revealed. Nat. Struct. Mol. Biol. 2006, 13:577-581.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 577-581
    • Munson, M.1    Novick, P.2
  • 16
    • 71149117138 scopus 로고    scopus 로고
    • A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1
    • Ren Y., et al. A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1. Cell 2009, 139:1119-1129.
    • (2009) Cell , vol.139 , pp. 1119-1129
    • Ren, Y.1
  • 17
    • 59649120867 scopus 로고    scopus 로고
    • Structural characterization of Tip20p and Dsl1p, subunits of the Dsl1p vesicle tethering complex
    • Tripathi A., et al. Structural characterization of Tip20p and Dsl1p, subunits of the Dsl1p vesicle tethering complex. Nat. Struct. Mol. Biol. 2009, 16:114-123.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 114-123
    • Tripathi, A.1
  • 18
    • 34548169619 scopus 로고    scopus 로고
    • Structural analysis of conserved oligomeric Golgi complex subunit 2
    • Cavanaugh L.F., et al. Structural analysis of conserved oligomeric Golgi complex subunit 2. J. Biol. Chem. 2007, 282:23418-23426.
    • (2007) J. Biol. Chem. , vol.282 , pp. 23418-23426
    • Cavanaugh, L.F.1
  • 19
    • 69449100200 scopus 로고    scopus 로고
    • Structural basis for a human glycosylation disorder caused by mutation of the COG4 gene
    • Richardson B.C., et al. Structural basis for a human glycosylation disorder caused by mutation of the COG4 gene. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:13329-13334.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 13329-13334
    • Richardson, B.C.1
  • 20
    • 70349319578 scopus 로고    scopus 로고
    • Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network
    • Perez-Victoria F.J., Bonifacino J.S. Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network. Mol. Cell Biol. 2009, 29:5251-5263.
    • (2009) Mol. Cell Biol. , vol.29 , pp. 5251-5263
    • Perez-Victoria, F.J.1    Bonifacino, J.S.2
  • 21
    • 37249008781 scopus 로고    scopus 로고
    • Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability
    • Shestakova A., et al. Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J. Cell. Biol. 2007, 179:1179-1192.
    • (2007) J. Cell. Biol. , vol.179 , pp. 1179-1192
    • Shestakova, A.1
  • 22
    • 48749099702 scopus 로고    scopus 로고
    • HOPS proofreads the trans-SNARE complex for yeast vacuole fusion
    • Starai V.J., et al. HOPS proofreads the trans-SNARE complex for yeast vacuole fusion. Mol. Biol. Cell 2008, 19:2500-2508.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 2500-2508
    • Starai, V.J.1
  • 23
    • 0347695021 scopus 로고    scopus 로고
    • Dsl1p, an essential component of the Golgi-endoplasmic reticulum retrieval system in yeast, uses the same sequence motif to interact with different subunits of the COPI vesicle coat
    • Andag U., Schmitt H.D. Dsl1p, an essential component of the Golgi-endoplasmic reticulum retrieval system in yeast, uses the same sequence motif to interact with different subunits of the COPI vesicle coat. J. Biol. Chem. 2003, 278:51722-51734.
    • (2003) J. Biol. Chem. , vol.278 , pp. 51722-51734
    • Andag, U.1    Schmitt, H.D.2
  • 24
    • 33847211759 scopus 로고    scopus 로고
    • TRAPPI tethers COPII vesicles by binding the coat subunit Sec23
    • Cai H.Q., et al. TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 2007, 445:941-944.
    • (2007) Nature , vol.445 , pp. 941-944
    • Cai, H.Q.1
  • 25
    • 69949175597 scopus 로고    scopus 로고
    • A link between ER tethering and COP-I vesicle uncoating
    • Zink S., et al. A link between ER tethering and COP-I vesicle uncoating. Dev. Cell 2009, 17:403-416.
    • (2009) Dev. Cell , vol.17 , pp. 403-416
    • Zink, S.1
  • 26
    • 33846590554 scopus 로고    scopus 로고
    • The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic
    • Behnia R., et al. The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic. J. Cell Biol. 2007, 176:255-261.
    • (2007) J. Cell Biol. , vol.176 , pp. 255-261
    • Behnia, R.1
  • 27
    • 24344480456 scopus 로고    scopus 로고
    • Dsl1p, Tip20p, and the novel Dsl3(Sec39) protein are required for the stability of the Q/t-SNARE complex at the endoplasmic reticulum in yeast
    • Kraynack B.A., et al. Dsl1p, Tip20p, and the novel Dsl3(Sec39) protein are required for the stability of the Q/t-SNARE complex at the endoplasmic reticulum in yeast. Mol. Biol. Cell 2005, 16:3963-3977.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 3963-3977
    • Kraynack, B.A.1
  • 28
    • 20044377804 scopus 로고    scopus 로고
    • Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion
    • Collins K.M., et al. Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion. EMBO J. 2005, 24:1775-1786.
    • (2005) EMBO J. , vol.24 , pp. 1775-1786
    • Collins, K.M.1
  • 29
    • 0026542540 scopus 로고
    • The Saccharomyces cerevisiae SEC20 gene encodes a membrane glycoprotein which is sorted by the hdel retrieval-system
    • Sweet D.J., Pelham H.R.B. The Saccharomyces cerevisiae SEC20 gene encodes a membrane glycoprotein which is sorted by the hdel retrieval-system. EMBO J. 1992, 11:423-432.
    • (1992) EMBO J. , vol.11 , pp. 423-432
    • Sweet, D.J.1    Pelham, H.R.B.2
  • 30
    • 0027294075 scopus 로고
    • The TIP1 gene of Saccharomyces cerevisiae encodes an 80 kda cytoplasmic protein that interacts with the cytoplasmic domain of Sec20p
    • Sweet D.J., Pelham H.R.B. The TIP1 gene of Saccharomyces cerevisiae encodes an 80 kda cytoplasmic protein that interacts with the cytoplasmic domain of Sec20p. EMBO J. 1993, 12:2831-2840.
    • (1993) EMBO J. , vol.12 , pp. 2831-2840
    • Sweet, D.J.1    Pelham, H.R.B.2
  • 31
    • 67949124784 scopus 로고    scopus 로고
    • On vesicle formation and tethering in the ER-Golgi shuttle
    • Spang A. On vesicle formation and tethering in the ER-Golgi shuttle. Curr. Opin. Cell Biol. 2009, 21:531-536.
    • (2009) Curr. Opin. Cell Biol. , vol.21 , pp. 531-536
    • Spang, A.1
  • 32
    • 11144354092 scopus 로고    scopus 로고
    • Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi
    • Hirose H., et al. Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. EMBO J. 2004, 23:1267-1278.
    • (2004) EMBO J. , vol.23 , pp. 1267-1278
    • Hirose, H.1
  • 33
    • 66349116721 scopus 로고    scopus 로고
    • Identification of the neuroblastoma-amplified gene (NAG) product as a component of the syntaxin 18 complex implicated in Golgi-to-endoplasmic reticulum retrograde transport
    • Aoki T., et al. Identification of the neuroblastoma-amplified gene (NAG) product as a component of the syntaxin 18 complex implicated in Golgi-to-endoplasmic reticulum retrograde transport. Mol. Biol. Cell 2009, 20:2639-2649.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 2639-2649
    • Aoki, T.1
  • 34
    • 33744768658 scopus 로고    scopus 로고
    • RINT-1 regulates the localization and entry of ZW10 to the syntaxin 18 complex
    • Arasaki K., et al. RINT-1 regulates the localization and entry of ZW10 to the syntaxin 18 complex. Mol. Biol. Cell 2006, 17:2780-2788.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 2780-2788
    • Arasaki, K.1
  • 35
    • 4444304199 scopus 로고    scopus 로고
    • Involvement of BNIP1 in apoptosis and endoplasmic reticulum membrane fusion
    • Nakajima K., et al. Involvement of BNIP1 in apoptosis and endoplasmic reticulum membrane fusion. EMBO J. 2004, 23:3216-3226.
    • (2004) EMBO J. , vol.23 , pp. 3216-3226
    • Nakajima, K.1
  • 36
    • 48649088279 scopus 로고    scopus 로고
    • N-terminal region of ZW10 serves not only as a determinant for localization but also as a link with dynein function
    • Inoue M., et al. N-terminal region of ZW10 serves not only as a determinant for localization but also as a link with dynein function. Genes Cells 2008, 13:905-914.
    • (2008) Genes Cells , vol.13 , pp. 905-914
    • Inoue, M.1
  • 37
    • 0030770154 scopus 로고    scopus 로고
    • Conservation of the centromere/kinetochore protein ZW10
    • Starr D.A., et al. Conservation of the centromere/kinetochore protein ZW10. J. Cell. Biol. 1997, 138:1289-1301.
    • (1997) J. Cell. Biol. , vol.138 , pp. 1289-1301
    • Starr, D.A.1
  • 38
    • 0035794203 scopus 로고    scopus 로고
    • RINT-1, a novel Rad50-interacting protein, participates in radiation-induced G(2)/M checkpoint control
    • Xiao J., et al. RINT-1, a novel Rad50-interacting protein, participates in radiation-induced G(2)/M checkpoint control. J. Biol. Chem. 2001, 276:6105-6111.
    • (2001) J. Biol. Chem. , vol.276 , pp. 6105-6111
    • Xiao, J.1
  • 39
    • 34347329213 scopus 로고    scopus 로고
    • RINT-1 serves as a tumor suppressor and maintains Golgi dynamics and centrosome integrity for cell survival
    • Lin X., et al. RINT-1 serves as a tumor suppressor and maintains Golgi dynamics and centrosome integrity for cell survival. Mol. Cell Biol. 2007, 27:4905-4916.
    • (2007) Mol. Cell Biol. , vol.27 , pp. 4905-4916
    • Lin, X.1
  • 40
    • 33645985136 scopus 로고    scopus 로고
    • The Rb-related p130 protein controls telomere lengthening through an interaction with a Rad50-interacting protein, RINT-1
    • Kong L.J., et al. The Rb-related p130 protein controls telomere lengthening through an interaction with a Rad50-interacting protein, RINT-1. Mol. Cell 2006, 22:63-71.
    • (2006) Mol. Cell , vol.22 , pp. 63-71
    • Kong, L.J.1
  • 41
    • 63049134520 scopus 로고    scopus 로고
    • P31 deficiency influences endoplasmic reticulum tubular morphology and cell survival
    • Uemura T., et al. p31 deficiency influences endoplasmic reticulum tubular morphology and cell survival. Mol. Cell Biol. 2009, 29:1869-1881.
    • (2009) Mol. Cell Biol. , vol.29 , pp. 1869-1881
    • Uemura, T.1
  • 42
    • 0033531259 scopus 로고    scopus 로고
    • Co-amplification of a novel gene, NAG, with the N-myc gene in neuroblastoma
    • Wimmer K., et al. Co-amplification of a novel gene, NAG, with the N-myc gene in neuroblastoma. Oncogene 1999, 18:233-238.
    • (1999) Oncogene , vol.18 , pp. 233-238
    • Wimmer, K.1
  • 43
    • 21744436611 scopus 로고    scopus 로고
    • Rod-Zw10-Zwilch: a key player in the spindle checkpoint
    • Karess R. Rod-Zw10-Zwilch: a key player in the spindle checkpoint. Trends Cell Biol. 2005, 15:386-392.
    • (2005) Trends Cell Biol. , vol.15 , pp. 386-392
    • Karess, R.1
  • 44
    • 33751237060 scopus 로고    scopus 로고
    • ZW10 function in mitotic checkpoint control, dynein targeting and membrane trafficking: Is dynein the unifying theme?
    • Vallee R.B., et al. ZW10 function in mitotic checkpoint control, dynein targeting and membrane trafficking: Is dynein the unifying theme?. Cell Cycle 2006, 5:2447-2451.
    • (2006) Cell Cycle , vol.5 , pp. 2447-2451
    • Vallee, R.B.1
  • 45
    • 19944427982 scopus 로고    scopus 로고
    • Human Zwint-1 specifies localization of Zeste White 10 to kinetochores and is essential for mitotic checkpoint signaling
    • Wang H., et al. Human Zwint-1 specifies localization of Zeste White 10 to kinetochores and is essential for mitotic checkpoint signaling. J. Biol. Chem. 2004, 279:54590-54598.
    • (2004) J. Biol. Chem. , vol.279 , pp. 54590-54598
    • Wang, H.1
  • 46
    • 0034121266 scopus 로고    scopus 로고
    • HZwint-1, a novel human kinetochore component that interacts with HZW10
    • Starr D.A., et al. HZwint-1, a novel human kinetochore component that interacts with HZW10. J. Cell. Sci. 2000, 113:1939-1950.
    • (2000) J. Cell. Sci. , vol.113 , pp. 1939-1950
    • Starr, D.A.1
  • 47
    • 39049107627 scopus 로고    scopus 로고
    • Stable hZW10 kinetochore residency, mediated by hZwint-1 interaction, is essential for the mitotic checkpoint
    • Famulski J.K., et al. Stable hZW10 kinetochore residency, mediated by hZwint-1 interaction, is essential for the mitotic checkpoint. J. Cell. Biol. 2008, 180:507-520.
    • (2008) J. Cell. Biol. , vol.180 , pp. 507-520
    • Famulski, J.K.1
  • 48
    • 0033672239 scopus 로고    scopus 로고
    • Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores
    • Chan G.K., et al. Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores. Nat. Cell Biol. 2000, 2:944-947.
    • (2000) Nat. Cell Biol. , vol.2 , pp. 944-947
    • Chan, G.K.1
  • 49
    • 0037694976 scopus 로고    scopus 로고
    • Zwilch, a new component of the ZW10/ROD complex required for kinetochore functions
    • Williams B.C., et al. Zwilch, a new component of the ZW10/ROD complex required for kinetochore functions. Mol. Biol. Cell. 2003, 14:1379-1391.
    • (2003) Mol. Biol. Cell. , vol.14 , pp. 1379-1391
    • Williams, B.C.1
  • 50
    • 0028094238 scopus 로고
    • The diversity of forms of mitosis in protozoa: a comparative review
    • Raikov I.B. The diversity of forms of mitosis in protozoa: a comparative review. Eur. J. Protistol. 1994, 30:253-269.
    • (1994) Eur. J. Protistol. , vol.30 , pp. 253-269
    • Raikov, I.B.1
  • 51
    • 0034799722 scopus 로고    scopus 로고
    • The ZW10 and Rough Deal checkpoint proteins function together in a large, evolutionarily conserved complex targeted to the kinetochore
    • Scaërou F., et al. The ZW10 and Rough Deal checkpoint proteins function together in a large, evolutionarily conserved complex targeted to the kinetochore. J. Cell. Sci. 2001, 114:3103-3114.
    • (2001) J. Cell. Sci. , vol.114 , pp. 3103-3114
    • Scaërou, F.1
  • 52
    • 0031852650 scopus 로고    scopus 로고
    • ZW10 helps recruit dynactin and dynein to the kinetochore
    • Starr D.A., et al. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 1998, 142:763-774.
    • (1998) J. Cell Biol. , vol.142 , pp. 763-774
    • Starr, D.A.1
  • 53
    • 51149118049 scopus 로고    scopus 로고
    • A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex
    • Gassmann R., et al. A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes Dev. 2008, 22:2385-2399.
    • (2008) Genes Dev. , vol.22 , pp. 2385-2399
    • Gassmann, R.1
  • 54
    • 0346335796 scopus 로고    scopus 로고
    • In vivo dynamics of the rough deal checkpoint protein during Drosophila mitosis
    • Basto R., et al. In vivo dynamics of the rough deal checkpoint protein during Drosophila mitosis. Curr. Biol. 2004, 14:56-61.
    • (2004) Curr. Biol. , vol.14 , pp. 56-61
    • Basto, R.1
  • 55
    • 17644396387 scopus 로고    scopus 로고
    • ZW10 links mitotic checkpoint signaling to the structural kinetochore
    • Kops G.J., et al. ZW10 links mitotic checkpoint signaling to the structural kinetochore. J. Cell Biol. 2005, 169:49-60.
    • (2005) J. Cell Biol. , vol.169 , pp. 49-60
    • Kops, G.J.1
  • 56
    • 18844449387 scopus 로고    scopus 로고
    • Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex
    • Buffin E., et al. Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. Curr. Biol. 2005, 15:856-861.
    • (2005) Curr. Biol. , vol.15 , pp. 856-861
    • Buffin, E.1
  • 57
    • 0030955328 scopus 로고    scopus 로고
    • ER-to-Golgi transport visualized in living cells
    • Presley J.F., et al. ER-to-Golgi transport visualized in living cells. Nature 1997, 389:81-85.
    • (1997) Nature , vol.389 , pp. 81-85
    • Presley, J.F.1
  • 58
    • 20544456820 scopus 로고    scopus 로고
    • Microtubule plus ends, motors, and traffic of Golgi membranes
    • Vaughan K.T. Microtubule plus ends, motors, and traffic of Golgi membranes. Biochim. Biophys. Acta. 2005, 1744:316-324.
    • (2005) Biochim. Biophys. Acta. , vol.1744 , pp. 316-324
    • Vaughan, K.T.1
  • 59
    • 70349330768 scopus 로고    scopus 로고
    • Molecular motors and the Golgi complex: Staying put and moving through
    • Brownhill K., et al. Molecular motors and the Golgi complex: Staying put and moving through. Semin. Cell Dev. Biol. 2009, 20:784-792.
    • (2009) Semin. Cell Dev. Biol. , vol.20 , pp. 784-792
    • Brownhill, K.1
  • 60
    • 34948888155 scopus 로고    scopus 로고
    • Rab6 regulates both ZW10/RINT-1-and conserved oligomeric Golgi complex-dependent Golgi trafficking and homeostasis
    • Sun Y., et al. Rab6 regulates both ZW10/RINT-1-and conserved oligomeric Golgi complex-dependent Golgi trafficking and homeostasis. Mol. Biol. Cell 2007, 18:4129-4142.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 4129-4142
    • Sun, Y.1
  • 61
    • 33644517564 scopus 로고    scopus 로고
    • Role of the kinetochore/cell cycle checkpoint protein ZW10 in interphase cytoplasmic dynein function
    • Varma D., et al. Role of the kinetochore/cell cycle checkpoint protein ZW10 in interphase cytoplasmic dynein function. J. Cell Biol. 2006, 172:655-662.
    • (2006) J. Cell Biol. , vol.172 , pp. 655-662
    • Varma, D.1
  • 62
    • 66349093877 scopus 로고    scopus 로고
    • Role of syntaxin 18 in the organization of endoplasmic reticulum subdomains
    • Iinuma T., et al. Role of syntaxin 18 in the organization of endoplasmic reticulum subdomains. J. Cell Sci. 2009, 122:1680-1690.
    • (2009) J. Cell Sci. , vol.122 , pp. 1680-1690
    • Iinuma, T.1
  • 63
    • 33645218017 scopus 로고    scopus 로고
    • Involvement of a novel Q-SNARE, D12, in quality control of the endomembrane system
    • Okumura A.J., et al. Involvement of a novel Q-SNARE, D12, in quality control of the endomembrane system. J. Biol. Chem. 2006, 281:4495-4506.
    • (2006) J. Biol. Chem. , vol.281 , pp. 4495-4506
    • Okumura, A.J.1
  • 64
    • 34249699586 scopus 로고    scopus 로고
    • Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint
    • Yang Z., et al. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr. Biol. 2007, 17:973-980.
    • (2007) Curr. Biol. , vol.17 , pp. 973-980
    • Yang, Z.1
  • 65
    • 0033080404 scopus 로고    scopus 로고
    • Role of microtubules in the organization of the Golgi complex
    • Thyberg J., Moskalewski S. Role of microtubules in the organization of the Golgi complex. Exp. Cell Res. 1999, 246:263-279.
    • (1999) Exp. Cell Res. , vol.246 , pp. 263-279
    • Thyberg, J.1    Moskalewski, S.2
  • 66
    • 12344277564 scopus 로고    scopus 로고
    • Coupling of ER exit to microtubules through direct interaction of COPII with dynactin
    • Watson P., et al. Coupling of ER exit to microtubules through direct interaction of COPII with dynactin. Nat. Cell Biol. 2005, 7:48-55.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 48-55
    • Watson, P.1
  • 67
    • 33847343375 scopus 로고    scopus 로고
    • Microtubule binding by dynactin is required for microtubule organization but not cargo transport
    • Kim H., et al. Microtubule binding by dynactin is required for microtubule organization but not cargo transport. J. Cell Biol. 2007, 176:641-651.
    • (2007) J. Cell Biol. , vol.176 , pp. 641-651
    • Kim, H.1
  • 68
    • 33746903069 scopus 로고    scopus 로고
    • Microtubule plus-end loading of p150(Glued) is mediated by EB1 and CLIP-170 but is not required for intracellular membrane traffic in mammalian cells
    • Watson P., Stephens D.J. Microtubule plus-end loading of p150(Glued) is mediated by EB1 and CLIP-170 but is not required for intracellular membrane traffic in mammalian cells. J. Cell Sci. 2006, 119:2758-2767.
    • (2006) J. Cell Sci. , vol.119 , pp. 2758-2767
    • Watson, P.1    Stephens, D.J.2
  • 69
    • 69949115962 scopus 로고    scopus 로고
    • CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport
    • Lomakin A.J., et al. CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport. Dev. Cell 2009, 17:323-333.
    • (2009) Dev. Cell , vol.17 , pp. 323-333
    • Lomakin, A.J.1
  • 70
    • 39149109922 scopus 로고    scopus 로고
    • Kinetochore-microtubule interactions: the means to the end
    • Tanaka T.U., Desai A. Kinetochore-microtubule interactions: the means to the end. Curr. Opin. Cell Biol. 2008, 20:53-63.
    • (2008) Curr. Opin. Cell Biol. , vol.20 , pp. 53-63
    • Tanaka, T.U.1    Desai, A.2
  • 71
    • 34250170864 scopus 로고    scopus 로고
    • Correlation of Golgi localization of ZW10 and centrosomal accumulation of dynactin
    • Arasaki K., et al. Correlation of Golgi localization of ZW10 and centrosomal accumulation of dynactin. Biochem. Biophys. Res. Commun. 2007, 359:811-816.
    • (2007) Biochem. Biophys. Res. Commun. , vol.359 , pp. 811-816
    • Arasaki, K.1
  • 72
    • 35948979262 scopus 로고    scopus 로고
    • Dyneins across eukaryotes: a comparative genomic analysis
    • Wickstead B., Gull K. Dyneins across eukaryotes: a comparative genomic analysis. Traffic 2007, 8:1708-1721.
    • (2007) Traffic , vol.8 , pp. 1708-1721
    • Wickstead, B.1    Gull, K.2
  • 73
    • 0037418576 scopus 로고    scopus 로고
    • Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning
    • Sheeman B., et al. Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr. Biol. 2003, 13:364-372.
    • (2003) Curr. Biol. , vol.13 , pp. 364-372
    • Sheeman, B.1
  • 74
    • 33750329972 scopus 로고    scopus 로고
    • Reconstructing the early evolution of Fungi using a six-gene phylogeny
    • James T.Y., et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 2006, 443:818-822.
    • (2006) Nature , vol.443 , pp. 818-822
    • James, T.Y.1
  • 75
    • 10344263403 scopus 로고    scopus 로고
    • Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p
    • Boyd C., et al. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J. Cell Biol. 2004, 167:889-901.
    • (2004) J. Cell Biol. , vol.167 , pp. 889-901
    • Boyd, C.1
  • 76
    • 69949183624 scopus 로고    scopus 로고
    • Conserved functions of membrane active GTPases in coated vesicle formation
    • Pucadyil T.J., Schmid S.L. Conserved functions of membrane active GTPases in coated vesicle formation. Science 2009, 325:1217-1220.
    • (2009) Science , vol.325 , pp. 1217-1220
    • Pucadyil, T.J.1    Schmid, S.L.2
  • 77
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: multiple sequence alignment with high accuracy and high throughput
    • Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32:1792-1797.
    • (2004) Nucleic Acids Res. , vol.32 , pp. 1792-1797
    • Edgar, R.C.1
  • 78
    • 0043123123 scopus 로고    scopus 로고
    • Tcoffee@igs: A web server for computing, evaluating and combining multiple sequence alignments
    • Poirot O., et al. Tcoffee@igs: A web server for computing, evaluating and combining multiple sequence alignments. Nucleic Acids Res. 2003, 31:3503-3506.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 3503-3506
    • Poirot, O.1
  • 79
    • 0035914416 scopus 로고    scopus 로고
    • The coatomer interacting protein Dsl1p is required for Golgi-to-ER retrieval in yeast
    • Andag U., et al. The coatomer interacting protein Dsl1p is required for Golgi-to-ER retrieval in yeast. J. Biol. Chem. 2001, 276:39150-39160.
    • (2001) J. Biol. Chem. , vol.276 , pp. 39150-39160
    • Andag, U.1
  • 80
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features
    • Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22:2577-2637.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 81
    • 67651160303 scopus 로고    scopus 로고
    • Remote homology between Munc13 MUN domain and vesicle tethering complexes
    • Pei J., et al. Remote homology between Munc13 MUN domain and vesicle tethering complexes. J. Mol. Biol. 2009, 391:509-517.
    • (2009) J. Mol. Biol. , vol.391 , pp. 509-517
    • Pei, J.1
  • 82
    • 77956623136 scopus 로고
    • Variant mitoses in lower eukaryotes: indicators of the evolution of mitosis?
    • Heath I.B. Variant mitoses in lower eukaryotes: indicators of the evolution of mitosis?. Int. Rev. Cytol. 1980, 64:1-80.
    • (1980) Int. Rev. Cytol. , vol.64 , pp. 1-80
    • Heath, I.B.1
  • 83
    • 46949092431 scopus 로고    scopus 로고
    • Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes
    • Burki F., et al. Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes. Biol. Lett. 2008, 4:366-369.
    • (2008) Biol. Lett. , vol.4 , pp. 366-369
    • Burki, F.1
  • 84
    • 70449701570 scopus 로고    scopus 로고
    • Double duty for nuclear proteins - the price of more open forms of mitosis
    • De Souza C.P., Osmani S.A. Double duty for nuclear proteins - the price of more open forms of mitosis. Trends Genet. 2009, 25:545-554.
    • (2009) Trends Genet. , vol.25 , pp. 545-554
    • De Souza, C.P.1    Osmani, S.A.2
  • 85
    • 77950518679 scopus 로고    scopus 로고
    • et al. ArfGAP1 interacts with coat proteins through tryptophan-based motifs. Biochem. Biophys. Res. Commun.
    • Rawet, M. et al. (2010) ArfGAP1 interacts with coat proteins through tryptophan-based motifs. Biochem. Biophys. Res. Commun. doi:10.1016/j.bbrc.2010.03.017.
    • (2010)
    • Rawet, M.1
  • 86
    • 77952613898 scopus 로고    scopus 로고
    • et al. Structural analysis of the RZZ complex reveals common ancestry with multisubunit vesicle tethering machinery. Structure. In press.
    • Çivril, F. et al. Structural analysis of the RZZ complex reveals common ancestry with multisubunit vesicle tethering machinery. Structure. In press. doi:10.1016/j.str.2010.02.014.
    • Çivril, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.