메뉴 건너뛰기




Volumn 49, Issue 6, 2010, Pages 2800-2811

Online monitoring of batch processes using IOHMM based MPLS

Author keywords

[No Author keywords available]

Indexed keywords

BATCH OPERATION; BATCH PROCESS; COLLINEARITY; COMPUTATIONAL LOADS; DYNAMIC INFORMATION; DYNAMIC SEQUENCES; FALSE DETECTIONS; HEALTH ASSESSMENTS; HIGH DIMENSIONALITY; HIGH QUALITY; INPUT-OUTPUT; INTEGRATED FRAMEWORKS; MONITORING CHARTS; ONLINE MONITORING; OUTPUT QUALITY; PARTIAL LEAST SQUARES; PROCESS VARIABLES; PRODUCT QUALITY; SINGLE-INPUT SINGLE-OUTPUT; STATE EVOLUTIONS; TRANSITION PROBABILITIES;

EID: 77949383623     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie900536z     Document Type: Article
Times cited : (17)

References (27)
  • 1
    • 0029252734 scopus 로고
    • Multivariate SPC Charts for Monitoring Batch Processes
    • Nomikos, P.; MacGregor, J. F. Multivariate SPC Charts for Monitoring Batch Processes. Technometrics 1995, 37, 41.
    • (1995) Technometrics , vol.37 , pp. 41
    • Nomikos, P.1    MacGregor, J.F.2
  • 2
    • 34250815100 scopus 로고    scopus 로고
    • Study of the Application of Multiway Multivariate Techniques to Model Data from an Industrial Fermentation Process
    • Ferreira, A. P.; Lopes, J. A.; Menezes, J. C. Study of the Application of Multiway Multivariate Techniques to Model Data from an Industrial Fermentation Process. Anal. Chim. Acta 2007, 595, 120.
    • (2007) Anal. Chim. Acta , vol.595 , pp. 120
    • Ferreira, A.P.1    Lopes, J.A.2    Menezes, J.C.3
  • 3
    • 33645344085 scopus 로고    scopus 로고
    • Industrial experiences with multivariate statistical analysis of batch process data
    • Chiang, L. H.; Leardi, R.; Pell, R. J.; Seasholtz, M. B. Industrial Experiences with Multivariate Statistical Analysis of Batch Process Data. Chemom. Intell. Lab. Syst. 2006, 81, 109.
    • (2006) Chemom. Intell. Lab. Syst. , vol.81 , pp. 109
    • Chiang, L.H.1    Leardi, R.2    Pell, R.J.3    Seasholtz, M.B.4
  • 4
    • 2342642072 scopus 로고    scopus 로고
    • Enhanced process monitoring of fed-batch penicillin cultivation using time-varying and multivariate statistical analysis
    • Lee, J.-M.; Yoo, C.-K.; Lee, I.-B. Enhanced Process Monitoring of Fed-Batch Penicillin Cultivation Using Time-Varying and Multivariate Statistical Analysis. J. Biotechnol. 2004, 110, 119.
    • (2004) J. Biotechnol. , vol.110 , pp. 119
    • Lee, J.-M.1    Yoo, C.-K.2    Lee, I.-B.3
  • 5
    • 0038198780 scopus 로고    scopus 로고
    • Recursive partial least algorithms for monitoring complex industrial processes
    • Wang, X.; Kruger, U.; Lennox, B. Recursive Partial Least Algorithms for Monitoring Complex Industrial Processes. Control Eng. Pract. 2003, 11, 613.
    • (2003) Control Eng. Pract. , vol.11 , pp. 613
    • Wang, X.1    Kruger, U.2    Lennox, B.3
  • 6
    • 0037039540 scopus 로고    scopus 로고
    • On-line batch process monitoring using dynamic PCA and dynamic PLS models
    • Chen, J.; Liu, K.-C. On-line Batch Process Monitoring Using Dynamic PCA and Dynamic PLS Models. Chem. Eng. Sci. 2002, 57, 63.
    • (2002) Chem. Eng. Sci. , vol.57 , pp. 63
    • Chen J.1    Liu, K.-C.2
  • 7
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • Qin, S. J. Statistical Process Monitoring: Basics and Beyond. J. Chemom. 2003, 17, 480.
    • (2003) J. Chemom. , vol.17 , pp. 480
    • Qin, S.J.1
  • 9
    • 2542606059 scopus 로고    scopus 로고
    • Monitoring of batch processes through state-space models
    • Lee, J. H.; Dorsey, A. W. Monitoring of Batch Processes through State-Space Models. AIChE J. 2004, 50, 1198.
    • (2004) AIChE J. , vol.50 , pp. 1198
    • Lee, J.H.1    Dorsey, A.W.2
  • 10
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec, P.; Gabrys, B.; Strandt, S. Data-Driven Soft Sensors in the Process Industry. Comput. Chem. Eng. 2009, 33, 795.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 11
    • 29144528034 scopus 로고    scopus 로고
    • Iterative learning control for final batch product quality using partial least squares models
    • Flores-Cerrillo, J.; MacGregor, J. F. Iterative Learning Control for Final Batch Product Quality Using Partial Least Squares Models. Ind. Eng. Chem. Res. 2005, 44, 9146.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 9146
    • Flores-Cerrillo, J.1    MacGregor, J.F.2
  • 12
    • 1342306725 scopus 로고    scopus 로고
    • Control of batch product quality by trajectory manipulation using latent variable models
    • Flores-Cerrillo, J.; MacGregor, J. F. Control of Batch Product Quality by Trajectory Manipulation Using Latent Variable Models. J. Process Control 2004, 14, 539.
    • (2004) J. Process Control , vol.14 , pp. 539
    • Flores-Cerrillo, J.1    MacGregor, J.F.2
  • 13
    • 36849039411 scopus 로고    scopus 로고
    • Dynamic model-based batch process monitoring
    • Choi, S. W.; Morris, J.; Lee, I.-B. Dynamic Model-Based Batch Process Monitoring. Chem. Eng. Sci. 2008, 63, 622.
    • (2008) Chem. Eng. Sci. , vol.63 , pp. 622
    • Choi, S.W.1    Morris, J.2    Lee, I.-B.3
  • 15
    • 0024610919 scopus 로고
    • A tutorial on hidden markov models and selected applications in speech recognition
    • Rabiner, L. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc. IEEE 1989, 76, 257.
    • (1989) Proc. IEEE , vol.76 , pp. 257
    • Rabiner, L.1
  • 17
    • 0347567526 scopus 로고    scopus 로고
    • Hidden markov model based fault diagnosis for stamping processes
    • Ge, M.; Du, R.; Xu, Y. Hidden Markov Model Based Fault Diagnosis for Stamping Processes. Mech. Syst. Signal Process. 2004, 18, 391.
    • (2004) Mech. Syst. Signal Process. , vol.18 , pp. 391
    • Ge, M.1    Du, R.2    Xu, Y.3
  • 19
    • 0029218313 scopus 로고
    • On-line cursive script recognition using time delay neural networks and hidden markov models
    • Schenkel, M.; Guyon, I.; Henderson, D. On-line Cursive Script Recognition Using Time Delay Neural Networks and Hidden Markov Models. Mach. Vision Appl. 1995, 215.
    • (1995) Mach. Vision Appl. , vol.215
    • Schenkel, M.1    Guyon, I.2    Henderson, D.3
  • 21
    • 0035118717 scopus 로고    scopus 로고
    • Experiments on the application of IOHMMs to model financial returns series
    • Bengio, Y.; Lauzon, V.-P.; Ducharme, R. Experiments on the Application of IOHMMs to Model Financial Returns Series. IEEE Trans. Neural Networks 2001, 12, 113.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 113
    • Bengio, Y.1    Lauzon, V.-P.2    Ducharme, R.3
  • 24
    • 58149371334 scopus 로고
    • Comparison of five rules for determining the number of components to retain
    • Zwick, W. R.; Velicer, W. F. Comparison of Five Rules for Determining the Number of Components to Retain. Psychol. Bull. 1986, 99, 432.
    • (1986) Psychol. Bull. , vol.99 , pp. 432
    • Zwick, W.R.1    Velicer, W.F.2
  • 27
    • 0001212550 scopus 로고    scopus 로고
    • Detection and Identification of Faulty Sensors in Dynamic Processes
    • Qin, S. J.; Li, W. Detection and Identification of Faulty Sensors in Dynamic Processes. AIChE J. 2001, 47, 1581.
    • (2001) AIChE J. , vol.47 , pp. 1581
    • Qin, S.J.1    Li, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.