메뉴 건너뛰기




Volumn 33, Issue 2, 2011, Pages 171-186

An iterative method for deciding SVM and single layer neural network structures

Author keywords

Beta function; Kernel function; Neural and statistical pattern recognition; Single layer neural network; Support vector machines

Indexed keywords

BETA FUNCTION; DATA POINTS; GENERALIZATION PERFORMANCE; HIDDEN LAYERS; HIDDEN UNITS; ITERATIVE ALGORITHM; KERNEL FUNCTION; NEURAL AND STATISTICAL PATTERN RECOGNITION; NEURAL NETWORK STRUCTURES; NON-LINEARLY SEPARABLE DATA; PERCEPTRON; SINGLE LAYER; SINGLE LAYER NEURAL NETWORK; SINGLE-HIDDEN-LAYER NEURAL NETWORKS; SUPPORT VECTOR; SVM CLASSIFIERS; THRESHOLDING; TRAINING DATA; TWO-CLASS CLASSIFICATION PROBLEMS;

EID: 79956146324     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-011-9171-3     Document Type: Article
Times cited : (9)

References (68)
  • 3
    • 0036768042 scopus 로고    scopus 로고
    • Evolutionary computation for the recognition of on-line cursive handwriting
    • Alimi AM (2002) Evolutionary computation for the recognition of on-line cursive handwriting. IETE J Res 48(5):385-396
    • (2002) IETE J. Res. , vol.48 , Issue.5 , pp. 385-396
    • Alimi, A.M.1
  • 4
    • 18044378048 scopus 로고    scopus 로고
    • Beta neuro-fuzzy systems
    • Alimi AM (2003) Beta neuro-fuzzy systems. TASK Quart J 7(1):23-41
    • (2003) TASK Quart J , vol.7 , Issue.1 , pp. 23-41
    • Alimi, A.M.1
  • 5
    • 0029424187 scopus 로고
    • New hierarchical control algorithm for large scale time-delay systems
    • Alimi AM, Derbel N (1995) New hierarchical control algorithm for large scale time-delay systems. Control comput 23(2):48-52
    • (1995) Control Comput. , vol.23 , Issue.2 , pp. 48-52
    • Alimi, A.M.1    Derbel, N.2
  • 7
    • 10444235281 scopus 로고    scopus 로고
    • A genetic-designed beta basis function neural network for multi-variable functions approximation
    • DOI 10.1080/00000000000000000, PII JPR8M1E51K66LA7M
    • Aouiti C, Alimi AM, Maalej A (2002) A genetic-designed beta basis function neural network for multivariable functions approximation. Syst Anal Model Simul 42(7):975-1009 (Pubitemid 44112393)
    • (2002) Systems Analysis Modelling Simulation , vol.42 , Issue.7 , pp. 975-1009
    • Aouiti, C.1    Alimi, A.M.2    Maalej, A.3
  • 9
    • 20444479798 scopus 로고    scopus 로고
    • The design of beta basis function neural network and beta fuzzy systems by a hierarchical genetic algorithm
    • DOI 10.1016/j.fss.2005.01.013, PII S0165011405000254
    • Aouiti C, Alimi AM, Karray F, Maalej A (2005) The design of beta basis function neural network and beta fuzzy systems by a hierarchical genetic algorithm. Fuzzy Sets Syst 154(2):251-274 (Pubitemid 40821833)
    • (2005) Fuzzy Sets and Systems , vol.154 , Issue.2 , pp. 251-274
    • Aouiti, C.1    Alimi, A.M.2    Karray, F.3    Maalej, A.4
  • 12
    • 0242383468 scopus 로고    scopus 로고
    • Feature vector selection and projection using kernels
    • DOI 10.1016/S0925-2312(03)00429-6
    • Baudat G, Anouar F (2003) Feature vector selection and projection using kernels. Neurocomputing 55:21-38 (Pubitemid 37336668)
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 21-38
    • Baudat, G.1    Anouar, F.2
  • 13
    • 21944448838 scopus 로고    scopus 로고
    • Geometric preprocessing, geometric feedforward neural networks and Clifford support vector machines for visual learning
    • DOI 10.1016/j.neucom.2004.11.041, PII S0925231205001116
    • Bayro-Corrochano E, Vallejo R, Arana-Daniel N (2005) Geometric preprocessing, geometric feedforward neural networks and Clifford support vector machines for visual learning. Neurocomputing 67:54-105, geometrical Methods in Neural Networks and Learning (Pubitemid 40949972)
    • (2005) Neurocomputing , vol.67 , Issue.1-4 SUPPL. , pp. 54-105
    • Bayro-Corrochano, E.1    Vallejo, R.2    Arana-Daniel, N.3
  • 15
    • 0036771105 scopus 로고    scopus 로고
    • Fuzzy control of robot manipulators: Some issues on design and rule base size reduction
    • Bezine H, Derbel N, Alimi AM (2002) Fuzzy control of robot manipulators: some issues on design and rule base size reduction. Eng Appl Artif Intell 15(5):401-416
    • (2002) Eng. Appl. Artif Intell , vol.15 , Issue.5 , pp. 401-416
    • Bezine, H.1    Derbel, N.2    Alimi, A.M.3
  • 19
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2:121-167 (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 21
    • 6344262722 scopus 로고    scopus 로고
    • Algorithmic approaches totraining support vector machines: Asurvey
    • D-Facto Publications, Belgium
    • Campbell C (2000) Algorithmic approaches totraining support vector machines: asurvey. In: Proceedings of ESANN2000. D-Facto Publications, Belgium, pp 27-36
    • (2000) Proceedings of ESANN2000 , pp. 27-36
    • Campbell, C.1
  • 23
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S, Cowan CFN, Grant PM (1991) Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neural Netw 2(2):302-309
    • (1991) IEEE Trans. Neural. Netw. , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 25
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: Support Vector Machines for large-scale regression problems
    • Collobert R, Bengio S, Williamson C (2001) SVMTorch: support vector machines for large-scale regression problems. J Mach Learn Res 1:143-160 (Pubitemid 33738779)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.2 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 27
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273-297
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 29
    • 34547110552 scopus 로고    scopus 로고
    • SVM-based tree-type neural networks as a critic in adaptive critic designs for control
    • DOI 10.1109/TNN.2007.899255, Neural Networks for Feedback Control Systems
    • Deb AK, Jayadeva, Gopal M, Chandra S (2007) SVM-based tree-type neural networks as a critic in adaptive critic designs for control. IEEE Trans Neural Netw 18(4):1016-1030 (Pubitemid 47098878)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.4 , pp. 1016-1030
    • Deb, A.K.1    Jayadeva2    Gopal, M.3    Chandra, S.4
  • 30
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
    • Fukumizu K, Bach F, Jordan MI (2004) Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. J Mach Learn Res 5:73-99
    • (2004) J. Mach Learn Res. , vol.5 , pp. 73-99
    • Fukumizu, K.1    Bach, F.2    Jordan, M.I.3
  • 32
    • 44949140736 scopus 로고    scopus 로고
    • β-SVM a new support vector machine
    • David RFA, Pearson W, Steele Nigel C eds, Springer-Verlag, Berlin
    • Hamdani TM, Alimi AM (2003) β-SVM a new support vector machine. In: David RFA, Pearson W, Steele Nigel C (eds) Artificial neural networks and genetic algorithms. Springer-Verlag, Berlin, pp 63-68
    • (2003) Artificial Neural. Networks and Genetic Algorithms , pp. 63-68
    • Hamdani, T.M.1    Alimi, A.M.2
  • 35
    • 34547331896 scopus 로고    scopus 로고
    • Distributed genetic algorithm with bi-coded chromosomes and a new evaluation function for features selection
    • 1688362, 2006 IEEE Congress on Evolutionary Computation, CEC 2006
    • Hamdani TM, Alimi AM, Karray F (2006) Distributed genetic algorithm with bi-coded chromosomes and a new evaluation function for features selection. In: Proceedings of IEEE Congress on evolutionary computation 2006. CEC 2006, pp 581-588 (Pubitemid 47130551)
    • (2006) 2006 IEEE Congress on Evolutionary Computation, CEC 2006 , pp. 581-588
    • Hamdani, T.M.1    Alimi, A.M.2    Karray, F.3
  • 38
    • 0042879960 scopus 로고    scopus 로고
    • Approximation properties of fuzzy systems for smooth functions and their first-order derivative
    • Hassine R, Karray F, Alimi AM, Selmi M (2003) Approximation properties of fuzzy systems for smooth functions and their first-order derivative. IEEE Trans Syst Man Cybern A 33(2):160-168
    • (2003) IEEE Trans. Syst. Man. Cybern A , vol.33 , Issue.2 , pp. 160-168
    • Hassine, R.1    Karray, F.2    Alimi, A.M.3    Selmi, M.4
  • 39
    • 28044443868 scopus 로고    scopus 로고
    • Approximation properties of piece-wise parabolic functions fuzzy logic systems
    • DOI 10.1016/j.fss.2005.07.004, PII S0165011405003751
    • Hassine R, Karray F, Alimi AM, Selmi M (2006) Approximation properties of piece-wise parabolic functions fuzzy logic systems. Fuzzy Sets Syst 157(4):501-515 (Pubitemid 41690772)
    • (2006) Fuzzy Sets and Systems , vol.157 , Issue.4 , pp. 501-515
    • Hassine, R.1    Karray, F.2    Alimi, A.M.3    Selmi, M.4
  • 40
    • 84957069814 scopus 로고    scopus 로고
    • Text Categorization with Support Vector Machines: Learning with many Relevant Features
    • Machine Learning: ECML-98
    • Joachims T (1998) Text categorization with support vector machines: learning with many relevant features. In: Nédellec C, Ruveirol C (eds) Proceedings of ECML-98, 10th european conference on machine learning, Springer, Heidelberg, pp 137-142 (Pubitemid 128067178)
    • (1998) Proceedings of ECML-98, 10th European Conference on Machine Learning , Issue.1398 , pp. 137-142
    • Joachims, T.1
  • 41
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • MIT Press, Cambridge
    • Joachims T (1999) Making large-scale support vector machine learning practical. In: Advances in kernel methods: support vector learning. MIT Press, Cambridge, pp 169-184
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 44
    • 34250723879 scopus 로고    scopus 로고
    • Accuracy preserving interpretability with hybrid hierarchical genetic fuzzy modeling: Case of motion planning robot controller
    • DOI 10.1109/ISEFS.2006.251151, 4016715, Proceedings of the 2006 International Symposium on Evolving Fuzzy Systems, EFS'06
    • Kallel I, Baklouti N, Alimi AM (2006) Accuracy preserving interpretability with hybrid hierarchical genetic fuzzy modeling: case of motion planning robot controller. In: Proceedings of the 2006 international symposium on evolving fuzzy systems, EFS'06, No 4016715, pp 312-317 (Pubitemid 46948127)
    • (2006) Proceedings of the 2006 International Symposium on Evolving Fuzzy Systems, EFS'06 , pp. 312-317
    • Kallel, I.1    Baklouti, N.2    Alimi, A.M.3
  • 45
    • 39049084699 scopus 로고    scopus 로고
    • On-line handwritten digit recognition based on trajectory and velocity modeling
    • Kherallah M, Haddad L, Alimi AM, Mitiche A (2008) On-line handwritten digit recognition based on trajectory and velocity modeling. Pattern Recognit Lett 29(5):580-594
    • (2008) Pattern Recognit Lett. , vol.29 , Issue.5 , pp. 580-594
    • Kherallah, M.1    Haddad, L.2    Alimi, A.M.3    Mitiche, A.4
  • 46
    • 0036737295 scopus 로고    scopus 로고
    • A formal analysis of stopping criteria of decomposition methods for support vector machines
    • Lin C-J (2002) A formal analysis of stopping criteria of decomposition methods for support vector machines. IEEE Trans Neural Netw 13(5):1045-1052
    • (2002) IEEE Trans. Neural. Netw. , vol.13 , Issue.5 , pp. 1045-1052
    • Lin, C.-J.1
  • 48
    • 0037276932 scopus 로고    scopus 로고
    • Face recognition using kernel direct discriminant analysis algorithms
    • Lu J, Plataniotis K, Venetsanopoulos A (2003) Face recognition using kernel direct discriminant analysis algorithms. IEEE Trans Neural Netw 14(1):117-126
    • (2003) IEEE Trans. Neural. Netw. , vol.14 , Issue.1 , pp. 117-126
    • Lu, J.1    Plataniotis, K.2    Venetsanopoulos, A.3
  • 54
    • 33845989907 scopus 로고    scopus 로고
    • Letters: Support vector perceptrons
    • Navia-Vázquez A (2007) Letters: support vector perceptrons. Neurocomputing 70 (4-6): 1089-1095
    • (2007) Neurocomputing , vol.70 , Issue.4-6 , pp. 1089-1095
    • Navia-Vázquez, A.1
  • 57
    • 0031468575 scopus 로고    scopus 로고
    • Speed/accuracy trade-offs in target-directed movements
    • DOI 10.1017/S0140525X97001441
    • Plamondon R, Alimi AM (1997) Speed/accuracy trade-offs in target-directed movements. Behav Brain Sci 20(2):279-349 (Pubitemid 28023052)
    • (1997) Behavioral and Brain Sciences , vol.20 , Issue.2 , pp. 279-349
    • Plamondon, R.1    Alimi, A.M.2
  • 58
    • 0027343873 scopus 로고
    • Modelling velocity profiles of rapid movements: A comparative study
    • Plamondon R, Alimi AM, Yergeau P, Leclerc F (1993) Modelling velocity profiles of rapid movements: a comparative study. Biol Cybern 69(2):119-128
    • (1993) Biol. Cybern , vol.69 , Issue.2 , pp. 119-128
    • Plamondon, R.1    Alimi, A.M.2    Yergeau, P.3    Leclerc, F.4
  • 59
    • 0004322632 scopus 로고    scopus 로고
    • Sequential minimal optimization: A fast algorithm for training support vector machines
    • Apr. 1998
    • Platt J (1998) Sequential minimal optimization: a fast algorithm for training support vector machines. Microsoft Research, TechReport MSRTR-98-14, Apr. 1998
    • (1998) Microsoft Research, TechReport MSRTR-98-14
    • Platt, J.1
  • 60
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge
    • Platt JC (1999) Fast training of support vector machines using sequential minimal optimization. In: Advances in kernel methods: support vector learning. MIT Press, Cambridge, pp 185-208
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 61
    • 0032029243 scopus 로고    scopus 로고
    • Evolution and generalization of a single neurone II. Complexity of statistical classifiers and sample size considerations
    • DOI 10.1016/S0893-6080(97)00136-6, PII S0893608097001366
    • Raudys S (1998) Evolution and generalization of a single neuron: II. Complexity of statistical classifiers and sample size considerations. Neural Netw 11(2):297-313 (Pubitemid 28231475)
    • (1998) Neural Networks , vol.11 , Issue.2 , pp. 297-313
    • Raudys, S.1
  • 62
    • 1542680908 scopus 로고    scopus 로고
    • Margin maximization with feed-forward neural networks: A comparative study with SVM and AdaBoost
    • DOI 10.1016/j.neucom.2003.10.011, PII S0925231203005186, New Aspects in Neurocomputing: 10th European Symposium on Arti
    • Romero E, Márquez L, Carreras X (2004) Margin maximization with feed-forward neural networks: a comparative study with SVM and AdaBoost. Neurocomputing 57:313-344. New aspects in neurocomputing: 10th European symposium on artificial neural networks 2002 (Pubitemid 38351874)
    • (2004) Neurocomputing , vol.57 , Issue.1-4 , pp. 313-344
    • Romero, E.1    Marquez, L.2    Carreras, X.3
  • 63
    • 0032634974 scopus 로고    scopus 로고
    • Training multilayer perceptron classifiers based on amodified support vector method
    • Suykens JAK, Vandewalle J (1999) Training multilayer perceptron classifiers based on amodified support vector method. IEEE Trans Neural Netw 10(4):907-911
    • (1999) IEEE Trans. Neural. Netw. , vol.10 , Issue.4 , pp. 907-911
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 65
    • 1842587663 scopus 로고    scopus 로고
    • A one-layer recurrent neural network for support vector machine learning
    • Xia Y, Wang J (2004) A one-layer recurrent neural network for support vector machine learning. IEEE Trans Syst Man Cybern B 34(2):1261-1269
    • (2004) IEEE Trans. Syst. Man. Cybern B , vol.34 , Issue.2 , pp. 1261-1269
    • Xia, Y.1    Wang, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.