메뉴 건너뛰기




Volumn 38, Issue 5, 2011, Pages 5197-5204

Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes

Author keywords

Feature chromosomes; Feature selection; Genetic algorithm; Parameters optimization; Support vector machines

Indexed keywords

ASYMPTOTIC BEHAVIORS; BENCHMARK DATABASE; CLASSIFICATION ACCURACY; DATA CLASSIFICATION; DIVERSE APPLICATIONS; FEATURE CHROMOSOMES; FEATURE SELECTION; FEATURE SUBSET; FEATURE SUBSET SELECTION; GENERALIZATION ERROR; GRID SEARCH; NEW APPROACHES; PARAMETER OPTIMIZATION; PARAMETER SETTING; PARAMETERS OPTIMIZATION; PROCESSING TIME; REAL-WORLD DATASETS; STRAIGHT LINES; SUPPORT VECTOR; TRAINING PROCEDURES;

EID: 79151484699     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.10.041     Document Type: Article
Times cited : (167)

References (28)
  • 1
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • J. Abonyi, and F. Szeifert Supervised fuzzy clustering for the identification of fuzzy classifiers Pattern Recognition Letters 14 24 2003 2195 2207
    • (2003) Pattern Recognition Letters , vol.14 , Issue.24 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, F.2
  • 3
    • 0141801207 scopus 로고    scopus 로고
    • School of Information Technology and Electrical Engineering. B.Sc. Thesis, University of Queenland
    • Cheung, N. (2001). Machine learning techniques for medical analysis. School of Information Technology and Electrical Engineering. B.Sc. Thesis, University of Queenland.
    • (2001) Machine Learning Techniques for Medical Analysis
    • Cheung, N.1
  • 7
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Bapnik Gene selection for cancer classification using support vector machines Machine Learning 46 1-3 2002 389 422
    • (2002) Machine Learning , vol.46 , Issue.13 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Bapnik, V.4
  • 9
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California, Irvine, CA
    • Hettich, S.; Blake, C. L.; & Merz, C. J. (1998). UCI repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine, CA. Available from http//www.ics.uci.edu/ ∼mlearn/MLRepository.html.
    • (1998) UCI Repository of Machine Learning Databases
    • Hettich, S.1    Blake, C.L.2    Merz, C.J.3
  • 12
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • C.-L. Huang, and C.-J. Wang A GA-based feature selection and parameters optimization for support vector machines Expert Systems with Applications 31 2006 231 240
    • (2006) Expert Systems with Applications , vol.31 , pp. 231-240
    • Huang, C.-L.1    Wang, C.-J.2
  • 13
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • S.S. Keerthi, and C.-J. Lin Asymptotic behaviors of support vector machines with Gaussian kernel Neural Computation 15 2003 1667 1689
    • (2003) Neural Computation , vol.15 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 14
    • 33847747430 scopus 로고    scopus 로고
    • Facial expression recognition in image sequences using geometric deformation features and support vector machines
    • I. Kotsia, and I. Pitas Facial expression recognition in image sequences using geometric deformation features and support vector machines IEEE Transactions on Image Processing 16 1 2007 172 187
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.1 , pp. 172-187
    • Kotsia, I.1    Pitas, I.2
  • 15
    • 67349231310 scopus 로고    scopus 로고
    • Using support vector machine with a hybrid feature selection method to the stock trend prediction
    • M.-C. Lee Using support vector machine with a hybrid feature selection method to the stock trend prediction Expert Systems with Applications 36 2009 10896 10904
    • (2009) Expert Systems with Applications , vol.36 , pp. 10896-10904
    • Lee, M.-C.1
  • 16
    • 48749109333 scopus 로고    scopus 로고
    • Particle swarm optimization for parameter determination and feature selection of support vector machines
    • S.-W. Lin, K.-C. Ying, S.-C. Chen, and Z.-J. Lee Particle swarm optimization for parameter determination and feature selection of support vector machines Expert Systems with Applications 35 2008 1817 1824
    • (2008) Expert Systems with Applications , vol.35 , pp. 1817-1824
    • Lin, S.-W.1    Ying, K.-C.2    Chen, S.-C.3    Lee, Z.-J.4
  • 18
    • 0742307309 scopus 로고    scopus 로고
    • Feature subset selection for support vector machines through discriminative function pruning analysis
    • K.Z. Mao Feature subset selection for support vector machines through discriminative function pruning analysis IEEE Transactions on Systems, Man, and Cybernetics 34 1 2004 60 67
    • (2004) IEEE Transactions on Systems, Man, and Cybernetics , vol.34 , Issue.1 , pp. 60-67
    • Mao, K.Z.1
  • 19
    • 51749123574 scopus 로고    scopus 로고
    • Classification of electrocardiogram signals with support vector machines and swarm optimization
    • F. Melgani, and Y. Bazi Classification of electrocardiogram signals with support vector machines and swarm optimization IEEE Transactions on Information Technology in Biomedicine 12 5 2008 667 677
    • (2008) IEEE Transactions on Information Technology in Biomedicine , vol.12 , Issue.5 , pp. 667-677
    • Melgani, F.1    Bazi, Y.2
  • 20
    • 53849141501 scopus 로고    scopus 로고
    • Attribute weighting via genetic algorithms for attribute weighted artificial immune system (AWAIS) and its application to heart disease and liver disorders problems
    • S. Ozsen, and S. Gunes Attribute weighting via genetic algorithms for attribute weighted artificial immune system (AWAIS) and its application to heart disease and liver disorders problems Expert Systems with Applications 36 2009 386 392
    • (2009) Expert Systems with Applications , vol.36 , pp. 386-392
    • Ozsen, S.1    Gunes, S.2
  • 21
    • 34249317613 scopus 로고    scopus 로고
    • Breast cancer diagnosis using least square support vector machine
    • K. Polat, and S. Gunes Breast cancer diagnosis using least square support vector machine Digital Signal Processing 17 4 2007 694 701
    • (2007) Digital Signal Processing , vol.17 , Issue.4 , pp. 694-701
    • Polat, K.1    Gunes, S.2
  • 22
    • 33748147286 scopus 로고    scopus 로고
    • Breast cancer and liver disorders classification using AIRS with performance evaluation by fuzzy resource allocation mechanism
    • K. Polat, S. Sahan, H. Kodaz, and S. Gunes Breast cancer and liver disorders classification using AIRS with performance evaluation by fuzzy resource allocation mechanism Expert Systems with Applications 32 2007 172 183
    • (2007) Expert Systems with Applications , vol.32 , pp. 172-183
    • Polat, K.1    Sahan, S.2    Kodaz, H.3    Gunes, S.4
  • 23
    • 62549106468 scopus 로고    scopus 로고
    • Rätsch, G. (1999). Benchmark data sets. Available from http://ida.first.gmd.de/∼raetsch/data/benchmarks.htm.
    • (1999) Benchmark Data Sets
    • Rätsch, G.1
  • 27
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • J. Yang, and V. Honavar Feature subset selection using a genetic algorithm IEEE Intelligent Systems 13 2 1998 44 49
    • (1998) IEEE Intelligent Systems , vol.13 , Issue.2 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 28
    • 59749093654 scopus 로고    scopus 로고
    • Evolving least squares support vector machines for stock market trend mining
    • L. Yu, H. Chen, S. Wang, and K.K. Lai Evolving least squares support vector machines for stock market trend mining IEEE Transactions on Evolutionary Computation 13 1 2009 87 102
    • (2009) IEEE Transactions on Evolutionary Computation , vol.13 , Issue.1 , pp. 87-102
    • Yu, L.1    Chen, H.2    Wang, S.3    Lai, K.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.