메뉴 건너뛰기




Volumn 27, Issue 9, 2012, Pages 1285-1294

Grain boundary relaxation strengthening of nanocrystalline Ni-W alloys

Author keywords

Grain boundaries; Hardness; Nanostructure

Indexed keywords

ACTIVATION VOLUME; ANNEALING TEMPERATURES; DOMINANT DEFORMATION MECHANISM; GRAIN BOUNDARY RELAXATION; GRAIN SIZE; GRAIN-BOUNDARY DEFECTS; HALL-PETCH; HARDENING EFFECTS; KINETIC RATES; NANOCRYSTALLINES; NI-W ALLOY; NON-EQUILIBRIUM GRAIN BOUNDARIES; TEMPERATURE DEPENDENCE; TRIPLE JUNCTION;

EID: 84862005632     PISSN: 08842914     EISSN: 20445326     Source Type: Journal    
DOI: 10.1557/jmr.2012.55     Document Type: Article
Times cited : (167)

References (54)
  • 1
    • 0347131161 scopus 로고    scopus 로고
    • Deformation mechanism transitions in nanoscale fcc metals
    • R.J. Asaro, P. Krysl, and B. Kad: Deformation mechanism transitions in nanoscale fcc metals. Philos. Mag. Lett. 83, 733 (2003).
    • (2003) Philos. Mag. Lett. , vol.83 , pp. 733
    • Asaro, R.J.1    Krysl, P.2    Kad, B.3
  • 3
    • 0043064096 scopus 로고    scopus 로고
    • Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals
    • S. Cheng, J.A. Spencer, and W.W. Milligan: Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater. 51, 4505 (2003).
    • (2003) Acta Mater. , vol.51 , pp. 4505
    • Cheng, S.1    Spencer, J.A.2    Milligan, W.W.3
  • 4
    • 33645961888 scopus 로고    scopus 로고
    • Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films
    • D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K.J. Hemker: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 (2006).
    • (2006) Acta Mater. , vol.54 , pp. 2253
    • Gianola, D.S.1    Van Petegem, S.2    Legros, M.3    Brandstetter, S.4    Van Swygenhoven, H.5    Hemker, K.J.6
  • 5
    • 4544344914 scopus 로고    scopus 로고
    • Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained al at room temperature
    • M. Jin, A.M. Minor, E.A. Stach, and J.W.Morris: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 (2004).
    • (2004) Acta Mater. , vol.52 , pp. 5381
    • Jin, M.1    Minor, A.M.2    Stach, E.A.3    Morris, J.W.4
  • 6
    • 11144236598 scopus 로고    scopus 로고
    • The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper
    • K. Zhang, J.R. Weertman, and J.A. Eastman: The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl. Phys. Lett. 85, 5197 (2004).
    • (2004) Appl. Phys. Lett. , vol.85 , pp. 5197
    • Zhang, K.1    Weertman, J.R.2    Eastman, J.A.3
  • 7
    • 72949087096 scopus 로고    scopus 로고
    • Experimental observations of stress-driven grain boundary migration
    • T.J. Rupert, D.S. Gianola, Y. Gan, and K.J. Hemker: Experimental observations of stress-driven grain boundary migration. Science 326, 1686 (2009).
    • (2009) Science , vol.326 , pp. 1686
    • Rupert, T.J.1    Gianola, D.S.2    Gan, Y.3    Hemker, K.J.4
  • 8
    • 30944467770 scopus 로고
    • Observation andmeasurement of grain rotation and plastic strain in nanostructured metal thin films
    • M. Ke, S.A.Hackney,W.W.Milligan, and E.C.Aifantis:Observation andmeasurement of grain rotation and plastic strain in nanostructured metal thin films. Nanostruct. Mater. 5, 689 (1995).
    • (1995) Nanostruct. Mater. , vol.5 , pp. 689
    • Ke, M.1    Hackney, S.A.2    Milligan, W.W.3    Aifantis, E.C.4
  • 11
    • 0032484975 scopus 로고    scopus 로고
    • Softening of nanocrystalline metals at very small grain sizes
    • J. Schiotz, F.D. Di Tolla, and K.W. Jacobsen: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).
    • (1998) Nature , vol.391 , pp. 561
    • Schiotz, J.1    Di Tolla, F.D.2    Jacobsen, K.W.3
  • 12
    • 0035587087 scopus 로고    scopus 로고
    • Grain-boundary sliding in nanocrystalline fcc metals
    • H. Van Swygenhoven and P.A. Derlet: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B 64, 224105 (2001).
    • (2001) Phys. Rev. , vol.B 64 , pp. 224105
    • Van Swygenhoven, H.1    Derlet, P.A.2
  • 13
    • 33646747003 scopus 로고    scopus 로고
    • Grain-boundary relaxation and its effect on plasticity in nanocrystalline fe
    • D. Jang and M. Atzmon: Grain-boundary relaxation and its effect on plasticity in nanocrystalline Fe. J. Appl. Phys. 99, 083504 (2006).
    • (2006) J. Appl. Phys. , vol.99 , pp. 083504
    • Jang, D.1    Atzmon, M.2
  • 14
    • 0035906662 scopus 로고    scopus 로고
    • Interface structures in nanocrystalline materials
    • S. Ranganathan, R. Divakar, and V.S. Raghunathan: Interface structures in nanocrystalline materials. Scr. Mater. 44, 1169 (2001).
    • (2001) Scr. Mater. , vol.44 , pp. 1169
    • Ranganathan, S.1    Divakar, R.2    Raghunathan, V.S.3
  • 15
    • 33746301132 scopus 로고    scopus 로고
    • Partial-dislocation-mediated processes in nanocrystalline ni with nonequilibrium grain boundaries
    • X.L. Wu and Y.T. Zhu: Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries. Appl. Phys. Lett. 89, 031922 (2006).
    • (2006) Appl. Phys. Lett. , vol.89 , pp. 031922
    • Wu, X.L.1    Zhu, Y.T.2
  • 16
    • 0041140328 scopus 로고
    • Grain-boundary atomic structure in nanocrystalline palladium from x-ray atomic distribution-functions
    • J. Loffler and J. Weissmuller: Grain-boundary atomic structure in nanocrystalline palladium from x-ray atomic distribution-functions. Phys. Rev. B 52, 7076 (1995).
    • (1995) Phys. Rev. , vol.B 52 , pp. 7076
    • Loffler, J.1    Weissmuller, J.2
  • 17
    • 0026897169 scopus 로고
    • Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition
    • J. Eckert, J.C. Holzer, C.E. Krill, and W.L. Johnson: Structural and thermodynamic properties of nanocrystalline FCC metals prepared by mechanical attrition. J. Mater. Res. 7, 1751 (1992).
    • (1992) J. Mater. Res. , vol.7 , pp. 1751
    • Eckert, J.1    Holzer, J.C.2    Krill, C.E.3    Johnson, W.L.4
  • 19
    • 0010726758 scopus 로고
    • Calorimetric measurements of the thermal relaxation in nanocrystalline platinum
    • A. Tschope, R. Birringer, and H. Gleiter: Calorimetric measurements of the thermal relaxation in nanocrystalline platinum. J. Appl. Phys. 71, 5391 (1992).
    • (1992) J. Appl. Phys. , vol.71 , pp. 5391
    • Tschope, A.1    Birringer, R.2    Gleiter, H.3
  • 20
    • 36549046143 scopus 로고    scopus 로고
    • Microstructural evolution during the heat treatment of nanocrystalline alloys
    • A.J. Detor and C.A. Schuh: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22, 3233 (2007).
    • (2007) J. Mater. Res. , vol.22 , pp. 3233
    • Detor, A.J.1    Schuh, C.A.2
  • 21
    • 33846820295 scopus 로고    scopus 로고
    • Strengthening mechanisms in electrodeposited ni-p alloys with nanocrystalline grains
    • L. Chang, P.W. Kao, and C.H. Chen: Strengthening mechanisms in electrodeposited Ni-P alloys with nanocrystalline grains. Scr. Mater. 56, 713 (2007).
    • (2007) Scr. Mater. , vol.56 , pp. 713
    • Chang, L.1    Kao, P.W.2    Chen, C.H.3
  • 22
    • 0031249242 scopus 로고    scopus 로고
    • Grain size determination and limits to hall-petch behavior in nanocrystalline nial powders
    • T. Volpp, E. Goring, W.M. Kuschke, and E. Arzt: Grain size determination and limits to Hall-Petch behavior in nanocrystalline NiAl powders. Nanostruct. Mater. 8, 855 (1997).
    • (1997) Nanostruct. Mater. , vol.8 , pp. 855
    • Volpp, T.1    Goring, E.2    Kuschke, W.M.3    Arzt, E.4
  • 23
    • 0027623517 scopus 로고
    • Hall-petch strengthening in nanocrystalline metals
    • J.R. Weertman: Hall-Petch strengthening in nanocrystalline metals. Mater. Sci. Eng. A 166, 161 (1993).
    • (1993) Mater. Sci. Eng. , vol.A 166 , pp. 161
    • Weertman, J.R.1
  • 24
    • 0026870283 scopus 로고
    • Grain-size dependent hardening and softening of nanocrystalline cu and pd
    • G.E. Fougere, J.R. Weertman, R.W. Siegel, and S. Kim: Grain-size dependent hardening and softening of nanocrystalline Cu and Pd. Scr. Metall. Mater. 26, 1879 (1992).
    • (1992) Scr. Metall. Mater. , vol.26 , pp. 1879
    • Fougere, G.E.1    Weertman, J.R.2    Siegel, R.W.3    Kim, S.4
  • 25
    • 4544234372 scopus 로고    scopus 로고
    • Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline ni
    • Y.M. Wang, S. Cheng, Q.M. Wei, E. Ma, T.G. Nieh, and A. Hamza: Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. Scr. Mater. 51, 1023 (2004).
    • (2004) Scr. Mater. , vol.51 , pp. 1023
    • Wang, Y.M.1    Cheng, S.2    Wei, Q.M.3    Ma, E.4    Nieh, T.G.5    Hamza, A.6
  • 26
    • 0037015211 scopus 로고    scopus 로고
    • On nonequilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular dynamics computer simulation
    • A. Hasnaoui, H. Van Swygenhoven, and P.M. Derlet: On nonequilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular dynamics computer simulation. Acta Mater. 50, 3927 (2002).
    • (2002) Acta Mater. , vol.50 , pp. 3927
    • Hasnaoui, A.1    Van Swygenhoven, H.2    Derlet, P.M.3
  • 27
    • 58549106844 scopus 로고    scopus 로고
    • Limits of hardness at the nanoscale: Molecular dynamics simulations
    • N.Q. Vo, R.S. Averback, P. Bellon, and A. Caro: Limits of hardness at the nanoscale: Molecular dynamics simulations. Phys. Rev. B 78, 241402 (2008).
    • (2008) Phys. Rev. , vol.B 78 , pp. 241402
    • Vo, N.Q.1    Averback, R.S.2    Bellon, P.3    Caro, A.4
  • 28
    • 64849096486 scopus 로고    scopus 로고
    • Yield strength in nanocrystalline cu during high strain rate deformation
    • N.Q. Vo, R.S. Averback, P. Bellon, and A. Caro: Yield strength in nanocrystalline Cu during high strain rate deformation. Scr. Mater. 61, 76 (2009).
    • (2009) Scr. Mater. , vol.61 , pp. 76
    • Vo, N.Q.1    Averback, R.S.2    Bellon, P.3    Caro, A.4
  • 29
    • 33751411663 scopus 로고    scopus 로고
    • Tailoring and patterning the grain size of nanocrystalline alloys
    • A.J. Detor and C.A. Schuh: Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55, 371 (2007).
    • (2007) Acta Mater. , vol.55 , pp. 371
    • Detor, A.J.1    Schuh, C.A.2
  • 30
    • 33749073188 scopus 로고    scopus 로고
    • Solute distribution in nanocrystalline ni-w alloys examined through atom probe tomography
    • A.J. Detor, M.K. Miller, and C.A. Schuh: Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography. Philos. Mag. 86, 4459 (2006).
    • (2006) Philos. Mag. , vol.86 , pp. 4459
    • Detor, A.J.1    Miller, M.K.2    Schuh, C.A.3
  • 31
    • 34547331302 scopus 로고    scopus 로고
    • Measuring grainboundary segregation in nanocrystalline alloys: Direct validation of statistical techniques using atom probe tomography
    • A.J. Detor, M.K. Miller, and C.A. Schuh: Measuring grainboundary segregation in nanocrystalline alloys: Direct validation of statistical techniques using atom probe tomography. Philos. Mag. Lett. 87, 581 (2007).
    • (2007) Philos. Mag. Lett. , vol.87 , pp. 581
    • Detor, A.J.1    Miller, M.K.2    Schuh, C.A.3
  • 32
    • 78651385043 scopus 로고    scopus 로고
    • Enhanced solid solution effects on the strength of nanocrystalline alloys
    • T.J. Rupert, J.C. Trenkle, and C.A. Schuh: Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 59, 1619 (2011).
    • (2011) Acta Mater. , vol.59 , Issue.1619
    • Rupert, T.J.1    Trenkle, J.C.2    Schuh, C.A.3
  • 33
    • 0038045147 scopus 로고    scopus 로고
    • On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction
    • Z. Zhang, F. Zhou, and E.J. Lavernia: On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction. Metall. Mater. Trans. A 34, 1349 (2003).
    • (2003) Metall. Mater. Trans. , vol.A 34 , pp. 1349
    • Zhang, Z.1    Zhou, F.2    Lavernia, E.J.3
  • 35
    • 34548667664 scopus 로고    scopus 로고
    • The hall-petch breakdown in nanocrystalline metals: A crossover to glass-like deformation
    • J.R. Trelewicz and C.A. Schuh: The Hall-Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation. Acta Mater. 55, 5948 (2007).
    • (2007) Acta Mater. , vol.55 , pp. 5948
    • Trelewicz, J.R.1    Schuh, C.A.2
  • 36
    • 3042606295 scopus 로고    scopus 로고
    • Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology
    • W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
    • (2004) J. Mater. Res. , vol.19 , pp. 3
    • Oliver, W.C.1    Pharr, G.M.2
  • 37
    • 0001703865 scopus 로고    scopus 로고
    • Indentation power-law creep of highpurity indium
    • B.N. Lucas and W.C. Oliver: Indentation power-law creep of highpurity indium. Metall. Mater. Trans. A 30, 601 (1999).
    • (1999) Metall. Mater. Trans. , vol.A 30 , pp. 601
    • Lucas, B.N.1    Oliver, W.C.2
  • 38
    • 18844449245 scopus 로고    scopus 로고
    • Strength asymmetry in nanocrystalline metals under multiaxial loading
    • A.C. Lund and C.A. Schuh: Strength asymmetry in nanocrystalline metals under multiaxial loading. Acta Mater. 53, 3193 (2005).
    • (2005) Acta Mater. , vol.53 , pp. 3193
    • Lund, A.C.1    Schuh, C.A.2
  • 39
    • 55149107000 scopus 로고    scopus 로고
    • The hall-petch breakdown at high strain rates: Optimizing nanocrystalline grain size for impact applications
    • J.R. Trelewicz and C.A. Schuh: The Hall-Petch breakdown at high strain rates: Optimizing nanocrystalline grain size for impact applications. Appl. Phys. Lett. 93, 171916 (2008).
    • (2008) Appl. Phys. Lett. , vol.93 , pp. 171916
    • Trelewicz, J.R.1    Schuh, C.A.2
  • 40
    • 0034289949 scopus 로고    scopus 로고
    • Kinetics of grain boundary recovery in deformed polycrystals
    • A.A. Nazarov: Kinetics of grain boundary recovery in deformed polycrystals. Interface Sci. 8, 315 (2000).
    • (2000) Interface Sci. , vol.8 , pp. 315
    • Nazarov, A.A.1
  • 41
    • 1642633990 scopus 로고    scopus 로고
    • Relaxation of nonequilibrium grainboundary structure in nanocrystals
    • D.V. Bachurin andA.A.Nazarov: Relaxation of nonequilibrium grainboundary structure in nanocrystals. Phys. Met. Metall. 97, 133 (2004).
    • (2004) Phys. Met. Metall. , vol.97 , pp. 133
    • Bachurin, D.V.1    Nazarov, A.A.2
  • 45
    • 0024734241 scopus 로고
    • Diffusion of silver in nanocrystalline copper between 303-k and 373-k
    • S. Schumacher, R. Birringer, R. Strauss, and H. Gleiter: Diffusion of silver in nanocrystalline copper between 303-K and 373-K. Acta Metall. 37, 2485 (1989).
    • (1989) Acta Metall. , vol.37 , pp. 2485
    • Schumacher, S.1    Birringer, R.2    Strauss, R.3    Gleiter, H.4
  • 46
    • 50549176937 scopus 로고
    • Surface self diffusion measurements on nickel by the mass transfer method
    • J.M. Blakely and H. Mykura: Surface self diffusion measurements on nickel by the mass transfer method. Acta Metall. 9, 23 (1961).
    • (1961) Acta Metall. , vol.9 , pp. 23
    • Blakely, J.M.1    Mykura, H.2
  • 47
    • 34047138870 scopus 로고    scopus 로고
    • Geometric considerations for diffusion in polycrystalline solids
    • Y. Chen and C.A. Schuh: Geometric considerations for diffusion in polycrystalline solids. J. Appl. Phys. 101, 063524 (2007).
    • (2007) J. Appl. Phys. , vol.101 , pp. 063524
    • Chen, Y.1    Schuh, C.A.2
  • 48
    • 34248648175 scopus 로고    scopus 로고
    • Contribution of triple junctions to the diffusion anomaly in nanocrystallinematerials
    • Y. Chen and C.A. Schuh: Contribution of triple junctions to the diffusion anomaly in nanocrystallinematerials. Scr. Mater. 57, 253 (2007).
    • (2007) Scr. Mater. , vol.57 , pp. 253
    • Chen, Y.1    Schuh, C.A.2
  • 49
    • 0027666834 scopus 로고
    • Thermodynamics of nanocrystalline platinum
    • A. Tschope and R. Birringer: Thermodynamics of nanocrystalline platinum. Acta Metall. Mater. 41, 2791 (1993).
    • (1993) Acta Metall. Mater. , vol.41 , pp. 2791
    • Tschope, A.1    Birringer, R.2
  • 51
    • 0001920595 scopus 로고
    • Thermally-activated deformation of bcc metals and alloys
    • G. Taylor: Thermally-activated deformation of bcc metals and alloys. Prog. Mater. Sci. 36, 29 (1992).
    • (1992) Prog. Mater. Sci. , vol.36 , pp. 29
    • Taylor, G.1
  • 52
    • 1342323564 scopus 로고    scopus 로고
    • Tension/compression strength asymmetry in a simulated nanocrystalline metal
    • A.C. Lund, T.G. Nieh, and C.A. Schuh: Tension/compression strength asymmetry in a simulated nanocrystalline metal. Phys. Rev. B 69, 012101 (2004).
    • (2004) Phys. Rev. , vol.B 69 , pp. 012101
    • Lund, A.C.1    Nieh, T.G.2    Schuh, C.A.3
  • 53
    • 79957982288 scopus 로고    scopus 로고
    • Room-temperature flow in a metallic glass-strain-rate dependence of shear-band behavior
    • W.H. Jiang and M. Atzmon: Room-temperature flow in a metallic glass-Strain-rate dependence of shear-band behavior. J. Alloy. Comp. 509, 7395 (2011).
    • (2011) J. Alloy. Comp. , vol.509 , Issue.7395
    • Jiang, W.H.1    Atzmon, M.2
  • 54
    • 34250825283 scopus 로고    scopus 로고
    • Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass
    • Y.F. Shi and M.L. Falk: Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Mater. 55, 4317 (2007).
    • (2007) Acta Mater. , vol.55 , pp. 4317
    • Shi, Y.F.1    Falk, M.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.