메뉴 건너뛰기




Volumn , Issue , 2009, Pages 99-108

Variance analysis in software fault prediction models

Author keywords

[No Author keywords available]

Indexed keywords

ACCURATE PREDICTION; BEST PRACTICE; BINARY CLASSIFIERS; CLASSIFICATION PERFORMANCE; CROSS VALIDATION; CURRENT PROJECTS; DATA SETS; EMPIRICAL SOFTWARE ENGINEERING; FAULT DATA; FAULT PREDICTION; IMPACT MODEL; PREDICTION PERFORMANCE; RELIABILITY INDICATORS; SOFTWARE FAULT PREDICTION; SOFTWARE QUALITY ASSURANCE; SOFTWARE SUBSYSTEM; TRAINING SUBSETS; VARIANCE ANALYSIS; VERIFICATION AND VALIDATION;

EID: 77951482577     PISSN: 10719458     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISSRE.2009.13     Document Type: Conference Paper
Times cited : (97)

References (29)
  • 2
    • 34247638920 scopus 로고    scopus 로고
    • A replicated quantitative analysis of fault distributions in complex software systems
    • C. Andersson and P. Runeson. A replicated quantitative analysis of fault distributions in complex software systems. IEEE Transaction of Software Engineering, 33(5):273-286, 2007.
    • (2007) IEEE Transaction of Software Engineering , vol.33 , Issue.5 , pp. 273-286
    • Andersson, C.1    Runeson, P.2
  • 3
    • 77951473558 scopus 로고    scopus 로고
    • A systematic and comprehensive investigation of methods to build and evaluate fault prediction models
    • TR-2008-06
    • E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic and comprehensive investigation of methods to build and evaluate fault prediction models. Simula Technical Report, TR-2008-06, 2008.
    • (2008) Simula Technical Report
    • Arisholm, E.1    Briand, L.C.2    Johannessen, E.B.3
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45:5-32, 2001.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0000343716 scopus 로고
    • Submodel selection and evaluation in regression: The x-random case
    • L. Breiman and P. Spector. Submodel selection and evaluation in regression: The x-random case. International Statistical Review, 60:291-319, 1992.
    • (1992) International Statistical Review , vol.60 , pp. 291-319
    • Breiman, L.1    Spector, P.2
  • 7
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 2006.
    • (2006) Journal of Machine Learning Research , pp. 7
    • Demsar, J.1
  • 12
    • 50349090268 scopus 로고    scopus 로고
    • Cross-validation and bootstrapping are unreliable in small sample classification
    • A. Isaksson, M.Wallman, H. Goransson, and M. Gustafsson. Cross-validation and bootstrapping are unreliable in small sample classification. Pattern Recognition Letters, 29:1960- 1965, 2008.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 1960-1965
    • Isaksson, A.1    Wallman, M.2    Goransson, H.3    Gustafsson, M.4
  • 13
    • 52549091028 scopus 로고    scopus 로고
    • Techniques for evaluating fault prediction models
    • Y. Jiang, B. Cukic, and Y. Ma. Techniques for evaluating fault prediction models. Empirical Software Engineering, 13(5):561-595, 2008.
    • (2008) Empirical Software Engineering , vol.13 , Issue.5 , pp. 561-595
    • Jiang, Y.1    Cukic, B.2    Ma, Y.3
  • 17
    • 0032156744 scopus 로고    scopus 로고
    • Classification of faultprone software modules: Prior probabilities, costs, and model evaluation
    • T. M. Khoshgoftaar and E. B. Allen. Classification of faultprone software modules: Prior probabilities, costs, and model evaluation. Empirical Software Engineering, 3(3):275-298, 1998.
    • (1998) Empirical Software Engineering , vol.3 , Issue.3 , pp. 275-298
    • Khoshgoftaar, T.M.1    Allen, E.B.2
  • 19
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In International Joint Conference on Artificial Intelligence (IJCAI), pages 1137- 1145, 1995.
    • (1995) International Joint Conference on Artificial Intelligence (IJCAI) , pp. 1137-1145
    • Kohavi, R.1
  • 20
    • 49349089233 scopus 로고    scopus 로고
    • Benchmarking classification models for software defect prediction: A proposed framework and novel findings
    • S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classification models for software defect prediction: A proposed framework and novel findings. Software Engineering, IEEE Transactions on, 34(4):485-496, 2008.
    • (2008) Software Engineering, IEEE Transactions on , vol.34 , Issue.4 , pp. 485-496
    • Lessmann, S.1    Baesens, B.2    Mues, C.3    Pietsch, S.4
  • 24
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • E. Parzen. On estimation of a probability density function and mode. Annual Statistics, 33(3):1065-1076, 1962.
    • (1962) Annual Statistics , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 25
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society B, 36(1):111-148, 1974.
    • (1974) Journal of the Royal Statistical Society B , vol.36 , Issue.1 , pp. 111-148
    • Stone, M.1
  • 27
    • 48349140000 scopus 로고    scopus 로고
    • A critical analysis of variants of the auc.
    • S. Vanderlooy and E. Hullermeier. A critical analysis of variants of the auc. Machine Learning, 72:247-262, 2008.
    • (2008) Machine Learning , vol.72 , pp. 247-262
    • Vanderlooy, S.1    Hullermeier, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.