메뉴 건너뛰기




Volumn 41, Issue 5, 2011, Pages 579-606

Choosing software metrics for defect prediction: An investigation on feature selection techniques

Author keywords

attribute selection; defect prediction; feature ranking; feature subset selection; search based software engineering; software metric; software quality

Indexed keywords

ATTRIBUTE SELECTION; DEFECT PREDICTION; FEATURE RANKING; FEATURE SUBSET SELECTION; SEARCH-BASED SOFTWARE ENGINEERING; SOFTWARE METRIC; SOFTWARE QUALITY;

EID: 79952838952     PISSN: 00380644     EISSN: 1097024X     Source Type: Journal    
DOI: 10.1002/spe.1043     Document Type: Article
Times cited : (262)

References (46)
  • 2
    • 49349089233 scopus 로고    scopus 로고
    • Benchmarking classification models for software defect prediction: A proposed framework and novel findings
    • Lessmann S, Baesens B, Mues C, Pietsch S,. Benchmarking classification models for software defect prediction: A proposed framework and novel findings. IEEE Transactions on Software Engineering 2008; 34 (4): 485-496.
    • (2008) IEEE Transactions on Software Engineering , vol.34 , Issue.4 , pp. 485-496
    • Lessmann, S.1    Baesens, B.2    Mues, C.3    Pietsch, S.4
  • 6
    • 57049133638 scopus 로고    scopus 로고
    • Software metrics: Progress after 25 years
    • Pfleeger SL,. Software metrics: Progress after 25 years ? IEEE Software 2008; 25 (6): 32-34.
    • (2008) IEEE Software , vol.25 , Issue.6 , pp. 32-34
    • Pfleeger, S.L.1
  • 7
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • Hall MA, Holmes G,. Benchmarking attribute selection techniques for discrete class data mining. IEEE Transactions on Knowledge and Data Engineering 2003; 15 (6): 1437-1447.
    • (2003) IEEE Transactions on Knowledge and Data Engineering , vol.15 , Issue.6 , pp. 1437-1447
    • Hall, M.A.1    Holmes, G.2
  • 13
    • 34748859982 scopus 로고    scopus 로고
    • The current state and future of search based software engineering
    • DOI 10.1109/FOSE.2007.29, 4221631, FoSE 2007: Future of Software Engineering
    • Harman M,. The current state and future of search based software engineering. Proceedings of FOSE'07: 2007 Future of Software Engineering. IEEE Computer Society: Washington, DC, 2007; 342-357. (Pubitemid 47484936)
    • (2007) FoSE 2007: Future of Software Engineering , pp. 342-357
    • Harman, M.1
  • 15
    • 28244470710 scopus 로고    scopus 로고
    • Finding the right data for software cost modeling
    • DOI 10.1109/MS.2005.151
    • Chen Z, Menzies T, Port D, Boehm B,. Finding the right data for software cost modeling. IEEE Software 2005; 22 (6): 38-46. (Pubitemid 41709723)
    • (2005) IEEE Software , vol.22 , Issue.6 , pp. 38-46
    • Chen, Z.1    Menzies, T.2    Port, D.3    Boehm, B.4
  • 16
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • DOI 10.1109/TKDE.2005.66
    • Liu H, Yu L,. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering 2005; 17 (4): 491-502. (Pubitemid 40495592)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 17
    • 2942602999 scopus 로고    scopus 로고
    • Entropy-based gene ranking without selection bias for the predictive classification of microarray data
    • Furlanello C, Serafini M, Merler S, Jurman G,. Entropy-based gene ranking without selection bias for the predictive classification of microarray data. BMC Bioinformatics 2003; 4: 54.
    • (2003) BMC Bioinformatics , vol.4 , pp. 54
    • Furlanello, C.1    Serafini, M.2    Merler, S.3    Jurman, G.4
  • 18
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman G,. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research 2003; 3: 1289-1305.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 26
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dash M, Liu H,. Consistency-based search in feature selection. Artificial Intelligence 2003; 151 (1-2): 151-176.
    • (2003) Artificial Intelligence , vol.151 , Issue.12 , pp. 151-176
    • Dash, M.1    Liu, H.2
  • 29
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • DOI 10.1023/A:1022689900470
    • Aha DW, Kibler D, Albert MK,. Instance-based learning algorithms. Machine Learning 1991; 6 (1): 37-66. (Pubitemid 21727227)
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 37-66
    • Aha David, W.1    Kibler Dennis2    Albert Marc, K.3
  • 34
    • 0031269184 scopus 로고    scopus 로고
    • On the Optimality of the Simple Bayesian Classifier under Zero-One Loss
    • Domingos P, Pazzani M,. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 1997; 29 (2-3): 103-130. (Pubitemid 127510035)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 37
    • 0004267735 scopus 로고    scopus 로고
    • Kluwer Academic Publishers: Norwell, MA, U.S.A.
    • Aha DW,. Lazy learning. Kluwer Academic Publishers: Norwell, MA, U.S.A., 1997.
    • (1997) Lazy Learning
    • Aha, D.W.1
  • 38
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T,. An introduction to ROC analysis. Pattern Recognition Letters 2006; 27 (8): 861-874.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 39
    • 32244442679 scopus 로고    scopus 로고
    • Case studies in the use of ROC curve analysis for sensor-based estimates in human computer interaction
    • Proceedings - Graphics Interface 2005
    • Fogarty J, Baker RS, Hudson SE,. Case studies in the use of roc curve analysis for sensor-based estimates in human computer interaction. Proceedings of Graphics Interface 2005. The Canadian Human-Computer Communications Society: Victoria, BC, Canada, 2005; 129-136. (Pubitemid 43211958)
    • (2005) Proceedings - Graphics Interface , pp. 129-136
    • Fogarty, J.1    Baker, R.S.2    Hudson, S.E.3
  • 42
    • 33845782503 scopus 로고    scopus 로고
    • Data mining static code attributes to learn defect predictors
    • DOI 10.1109/TSE.2007.256941
    • Menzies T, Greenwald J, Frank A,. Data mining static code attributes to learn defect predictors. IEEE Transactions on Software Engineering 2007; 33 (1): 2-13. (Pubitemid 46002165)
    • (2007) IEEE Transactions on Software Engineering , vol.33 , Issue.1 , pp. 2-13
    • Menzies, T.1    Greenwald, J.2    Frank, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.