메뉴 건너뛰기




Volumn 23, Issue , 2006, Pages 295-304

Feature selection by combining multiple methods

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33748883822     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/3-540-33880-2_30     Document Type: Article
Times cited : (19)

References (16)
  • 1
    • 0002094343 scopus 로고    scopus 로고
    • Generalization Performance of Support Vector Machines and Other Pattern Classifiers
    • Bernhard Scholkopf, Christopher J. C. Burges, and Alexander J. Smola (eds.), MIT Press, Cambridge, USA
    • Bartlett P. and Shawe-Taylor J., Generalization Performance of Support Vector Machines and Other Pattern Classifiers, In "Advances in Kernel Methods, Support Vector Learning", Bernhard Scholkopf, Christopher J. C. Burges, and Alexander J. Smola (eds.), MIT Press, Cambridge, USA, 1998.
    • (1998) "Advances in Kernel Methods, Support Vector Learning"
    • Bartlett, P.1    Shawe-Taylor, J.2
  • 2
    • 0003954942 scopus 로고    scopus 로고
    • Diversity Versus Quality in Classification Ensernbles Based on Feature Selection
    • In: R. L. de Mántaras and E. Plaza (eds.), Barcelona, Spain, LNCS 1810, Springer
    • Cunningham P., and Carney J., Diversity Versus Quality in Classification Ensernbles Based on Feature Selection, In: R. L. de Mántaras and E. Plaza (eds.), Proc. ECML 2000, 11th European Conf. On Machine Learning, Barcelona, Spain, LNCS 1810, Springer, 2000
    • (2000) Proc. ECML 2000, 11th European Conf. On Machine Learning
    • Cunningham, P.1    Carney, J.2
  • 3
    • 0004060921 scopus 로고    scopus 로고
    • Correlation- based Feature Selection for Machine Learning
    • University of Waikato
    • Hall, M. Correlation- based Feature Selection for Machine Learning. University of Waikato, 1999.
    • (1999)
    • Hall, M.1
  • 5
    • 4544223395 scopus 로고    scopus 로고
    • Using Rough Sets Theory and Database Operations to Construct a Good Ensemble of Classifiers for Data Mining Applications
    • ICDM01
    • Hu, X., Using Rough Sets Theory and Database Operations to Construct a Good Ensemble of Classifiers for Data Mining Applications. ICDM01. pp. 233-240, 2001.
    • (2001) , pp. 233-240
    • Hu, X.1
  • 7
    • 33748914421 scopus 로고    scopus 로고
    • Random Voronoi ensembles for gene selection in DNA microarray data
    • in Udo Seiffert and Lakhmi C. Jain, editors, World Scientific Publishing, Singapore
    • Masulli, F. and Rovetta, S. Random Voronoi ensembles for gene selection in DNA microarray data, in Udo Seiffert and Lakhmi C. Jain, editors, Bioinformatics using Computational Intelligence Paradigms, World Scientific Publishing, Singapore, 2003
    • (2003) Bioinformatics Using Computational Intelligence Paradigms
    • Masulli, F.1    Rovetta, S.2
  • 8
    • 0003971926 scopus 로고
    • Subset Selection in Regression
    • Chapman and Hall, New York
    • Miller, A. Subset Selection in Regression. Chapman and Hall, New York, 1990.
    • (1990)
    • Miller, A.1
  • 11
    • 0003500248 scopus 로고
    • C4.5: Programs for machine learning
    • Morgan Kaufmann, Los Altos, California
    • Quinlan, J. C4.5: Programs for machine learning. Morgan Kaufmann, Los Altos, California, 1993.
    • (1993)
    • Quinlan, J.1
  • 12
    • 33744584654 scopus 로고    scopus 로고
    • Induction of decision trees
    • Quinlan, J. Induction of decision trees. Machine Learning, 1: 81-106, 1996
    • (1996) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.1
  • 13
    • 30344481918 scopus 로고    scopus 로고
    • Variable selection using ensemble methods
    • Torkkola, K. and Tuv, E. Variable selection using ensemble methods. IEEE Intelligent Systems, 2005, (Vol. 20, No. 6): 68-70.
    • (2005) IEEE Intelligent Systems , vol.20 , Issue.6 , pp. 68-70
    • Torkkola, K.1    Tuv, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.