메뉴 건너뛰기




Volumn 78, Issue 9, 2012, Pages 3079-3086

Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID RESIDUES; CHARGED AMINO ACIDS; COFACTOR SPECIFICITY; COFACTORS; HIGHER EFFICIENCY; ISOTHERMAL TITRATION CALORIMETRY; MOLECULAR DETERMINANTS; NON-POLAR; POLAR AMINO ACIDS; POSITIVELY CHARGED; SITE DIRECTED MUTAGENESIS; SUBSTRATE-BINDING; WILD TYPES; ZYMOMONAS MOBILIS;

EID: 84861116187     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.07751-11     Document Type: Article
Times cited : (21)

References (37)
  • 1
    • 77956172696 scopus 로고    scopus 로고
    • Structure and engineering of L-arabinitol 4-dehydrogenase from Neurospora crassa
    • Bae B, Sullivan RP, Zhao H, Nair SK. 2010. Structure and engineering of L-arabinitol 4-dehydrogenase from Neurospora crassa. J. Mol. Biol. 402: 230-240.
    • (2010) J. Mol. Biol. , vol.402 , pp. 230-240
    • Bae, B.1    Sullivan, R.P.2    Zhao, H.3    Nair, S.K.4
  • 2
    • 0036892773 scopus 로고    scopus 로고
    • Verification of a novel NADH-binding motif: combinatorial mutagenesis of three amino acids in the cofactor-binding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase
    • Banta S, Anderson S. 2002. Verification of a novel NADH-binding motif: combinatorial mutagenesis of three amino acids in the cofactor-binding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase. J. Mol. Evol. 55:623-631.
    • (2002) J. Mol. Evol. , vol.55 , pp. 623-631
    • Banta, S.1    Anderson, S.2
  • 3
    • 12244255119 scopus 로고    scopus 로고
    • Mathematical modeling of in vitro enzymatic production of 2-keto-L-gulonic acid using NAD(H) or NADP(H) as cofactors
    • Banta S, Boston M, Jarnagin A, Anderson S. 2002. Mathematical modeling of in vitro enzymatic production of 2-keto-L-gulonic acid using NAD(H) or NADP(H) as cofactors. Metab. Eng. 4:273-284.
    • (2002) Metab. Eng. , vol.4 , pp. 273-284
    • Banta, S.1    Boston, M.2    Jarnagin, A.3    Anderson, S.4
  • 4
    • 0037150104 scopus 로고    scopus 로고
    • Optimizing an artificial metabolic pathway: engineering the cofactor specificity of Corynebacterium 2,5-diketo-D-gluconic acid reductase for use in vitamin C biosynthesis
    • Banta S, Swanson BA, Wu S, Jarnagin A, Anderson S. 2002. Optimizing an artificial metabolic pathway: engineering the cofactor specificity of Corynebacterium 2,5-diketo-D-gluconic acid reductase for use in vitamin C biosynthesis. Biochemistry 41:6226-6236.
    • (2002) Biochemistry , vol.41 , pp. 6226-6236
    • Banta, S.1    Swanson, B.A.2    Wu, S.3    Jarnagin, A.4    Anderson, S.5
  • 5
    • 0027480616 scopus 로고
    • Creation of an NADPdependent pyruvate dehydrogenase multienzyme complex by protein engineering
    • Bocanegra JA, Scrutton NS, Perham RN. 1993. Creation of an NADPdependent pyruvate dehydrogenase multienzyme complex by protein engineering. Biochemistry 32:2737-2740.
    • (1993) Biochemistry , vol.32 , pp. 2737-2740
    • Bocanegra, J.A.1    Scrutton, N.S.2    Perham, R.N.3
  • 6
    • 0017184389 scopus 로고
    • A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
    • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
    • (1976) Anal. Biochem. , vol.72 , pp. 248-254
    • Bradford, M.M.1
  • 7
    • 0030893657 scopus 로고    scopus 로고
    • NADP-dependent enzymes. I. Conserved stereochemistry of cofactor binding
    • Carugo O, Argos P. 1997. NADP-dependent enzymes. I. Conserved stereochemistry of cofactor binding. Proteins 28:10-28.
    • (1997) Proteins , vol.28 , pp. 10-28
    • Carugo, O.1    Argos, P.2
  • 8
    • 0030972646 scopus 로고    scopus 로고
    • NADP-dependent enzymes. II. Evolution of the mono- and dinucleotide binding domains
    • Carugo O, Argos P. 1997. NADP-dependent enzymes. II. Evolution of the mono- and dinucleotide binding domains. Proteins 28:29-40.
    • (1997) Proteins , vol.28 , pp. 29-40
    • Carugo, O.1    Argos, P.2
  • 9
    • 0029557251 scopus 로고
    • A highly active decarboxylating dehydrogenase with rationally inverted coenzyme specificity
    • Chen R, Greer A, Dean AM. 1995. A highly active decarboxylating dehydrogenase with rationally inverted coenzyme specificity. Proc. Natl. Acad. Sci. U. S. A. 92:11666-11670.
    • (1995) Proc. Natl. Acad. Sci. U. S. A. , vol.92 , pp. 11666-11670
    • Chen, R.1    Greer, A.2    Dean, A.M.3
  • 10
    • 0030002725 scopus 로고    scopus 로고
    • Redesigning secondary structure to invert coenzyme specificity in isopropylmalate dehydrogenase
    • Chen R, Greer A, Dean AM. 1996. Redesigning secondary structure to invert coenzyme specificity in isopropylmalate dehydrogenase. Proc. Natl. Acad. Sci. U. S. A. 93:12171-12176.
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , pp. 12171-12176
    • Chen, R.1    Greer, A.2    Dean, A.M.3
  • 11
    • 0025989616 scopus 로고
    • Role of aspartic acid 38 in the cofactor specificity of Drosophila alcohol dehydrogenase
    • Chen Z, Lee WR, Chang SH. 1991. Role of aspartic acid 38 in the cofactor specificity of Drosophila alcohol dehydrogenase. Eur. J. Biochem. 202: 263-267.
    • (1991) Eur. J. Biochem. , vol.202 , pp. 263-267
    • Chen, Z.1    Lee, W.R.2    Chang, S.H.3
  • 13
    • 0033587499 scopus 로고    scopus 로고
    • Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the Cyanobacterium anabaena PCC 7120 by redesign of the pyridinenucleotide-binding site
    • Danielson UH, Jiang F, Hansson LO, Mannervik B. 1999. Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the Cyanobacterium anabaena PCC 7120 by redesign of the pyridinenucleotide-binding site. Biochemistry 38:9254-9263.
    • (1999) Biochemistry , vol.38 , pp. 9254-9263
    • Danielson, U.H.1    Jiang, F.2    Hansson, L.O.3    Mannervik, B.4
  • 14
    • 0025191073 scopus 로고
    • A single amino acid substitution in lactate dehydrogenase improves the catalytic efficiency with an alternative coenzyme
    • Feeney R, Clarke AR, Holbrook JJ. 1990. A single amino acid substitution in lactate dehydrogenase improves the catalytic efficiency with an alternative coenzyme. Biochem. Biophys. Res. Commun. 166:667-672.
    • (1990) Biochem. Biophys. Res. Commun. , vol.166 , pp. 667-672
    • Feeney, R.1    Clarke, A.R.2    Holbrook, J.J.3
  • 15
    • 0035947598 scopus 로고    scopus 로고
    • Porcine carbonyl reductase. structural basis for a functional monomer in short chain dehydrogenases/reductases
    • Ghosh D, et al. 2001. Porcine carbonyl reductase. structural basis for a functional monomer in short chain dehydrogenases/reductases. J. Biol. Chem. 276:18457-18463.
    • (2001) J. Biol. Chem. , vol.276 , pp. 18457-18463
    • Ghosh, D.1
  • 17
    • 26844523510 scopus 로고    scopus 로고
    • Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration
    • Johannes TW, Woodyer RD, Zhao H. 2005. Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration. Appl. Environ. Microbiol. 71:5728-5734.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 5728-5734
    • Johannes, T.W.1    Woodyer, R.D.2    Zhao, H.3
  • 19
    • 70349463121 scopus 로고    scopus 로고
    • Computational design of Candida boidinii xylose reductase for altered cofactor specificity
    • Khoury GA, et al. 2009. Computational design of Candida boidinii xylose reductase for altered cofactor specificity. Protein Sci. 18:2125-2138.
    • (2009) Protein Sci , vol.18 , pp. 2125-2138
    • Khoury, G.A.1
  • 20
    • 0037441653 scopus 로고    scopus 로고
    • Structure validation by Cα geometry: φ, ψ, and Cβ deviation
    • Lovell SC, et al. 2003. Structure validation by Cα geometry: φ, ψ, and Cβ deviation. Proteins 50:437-450.
    • (2003) Proteins , vol.50 , pp. 437-450
    • Lovell, S.C.1
  • 23
    • 77952889758 scopus 로고    scopus 로고
    • Cloning and characterization of a ribitol dehydrogenase from Zymomonas mobilis
    • Moon HJ, Tiwari M, Jeya M, Lee JK. 2010. Cloning and characterization of a ribitol dehydrogenase from Zymomonas mobilis. Appl. Microbiol. Biotechnol. 87:205-214.
    • (2010) Appl. Microbiol. Biotechnol. , vol.87 , pp. 205-214
    • Moon, H.J.1    Tiwari, M.2    Jeya, M.3    Lee, J.K.4
  • 24
    • 0031035010 scopus 로고    scopus 로고
    • Switch of coenzyme specificity of mouse lung carbonyl reductase by substitution of threonine 38 with aspartic acid
    • Nakanishi M, et al. 1997. Switch of coenzyme specificity of mouse lung carbonyl reductase by substitution of threonine 38 with aspartic acid. J. Biol. Chem. 272:2218-2222.
    • (1997) J. Biol. Chem. , vol.272 , pp. 2218-2222
    • Nakanishi, M.1
  • 25
    • 12744267344 scopus 로고    scopus 로고
    • Short-chain dehydrogenases/reductases (SDR): the 2002 update
    • Oppermann U, et al. 2003. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem. Biol. Interact 143-144:247-253.
    • (2003) Chem. Biol. Interact , vol.143-144 , pp. 247-253
    • Oppermann, U.1
  • 26
    • 0034647737 scopus 로고    scopus 로고
    • Inhibition of the thioredoxin-dependent activation of the NADP-malate dehydrogenase and cofactor specificity
    • Schepens I, et al. 2000. Inhibition of the thioredoxin-dependent activation of the NADP-malate dehydrogenase and cofactor specificity. J. Biol. Chem. 275:20996-21001.
    • (2000) J. Biol. Chem. , vol.275 , pp. 20996-21001
    • Schepens, I.1
  • 27
    • 0025019734 scopus 로고
    • Redesign of the coenzyme specificity of a dehydrogenase by protein engineering
    • Scrutton NS, Berry A, Perham RN. 1990. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343:38-43.
    • (1990) Nature , vol.343 , pp. 38-43
    • Scrutton, N.S.1    Berry, A.2    Perham, R.N.3
  • 28
    • 0036845955 scopus 로고    scopus 로고
    • Engineering of coenzyme specificity of formate dehydrogenase from Saccharomyces cerevisiae
    • Serov AE, Popova AS, Fedorchuk VV, Tishkov VI. 2002. Engineering of coenzyme specificity of formate dehydrogenase from Saccharomyces cerevisiae. Biochem. J. 367:841-847.
    • (2002) Biochem. J. , vol.367 , pp. 841-847
    • Serov, A.E.1    Popova, A.S.2    Fedorchuk, V.V.3    Tishkov, V.I.4
  • 29
    • 0036039186 scopus 로고    scopus 로고
    • Identification of cofactor discrimination sites in NAD-isocitrate dehydrogenase from Pyrococcus furiosus
    • Steen IH, Lien T, Madsen MS, Birkeland NK. 2002. Identification of cofactor discrimination sites in NAD-isocitrate dehydrogenase from Pyrococcus furiosus. Arch. Microbiol. 178:297-300.
    • (2002) Arch. Microbiol. , vol.178 , pp. 297-300
    • Steen, I.H.1    Lien, T.2    Madsen, M.S.3    Birkeland, N.K.4
  • 30
    • 0030000879 scopus 로고    scopus 로고
    • Crystal structures of the binary and ternary complexes of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli
    • Tanaka N, et al. 1996. Crystal structures of the binary and ternary complexes of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli. Biochemistry 35:7715-7730.
    • (1996) Biochemistry , vol.35 , pp. 7715-7730
    • Tanaka, N.1
  • 31
    • 77951978627 scopus 로고    scopus 로고
    • Molecular modeling studies of L-arabinitol 4-dehydrogenase of Hypocrea jecorina: its binding interactions with substrate and cofactor
    • Tiwari M, Lee JK. 2010. Molecular modeling studies of L-arabinitol 4-dehydrogenase of Hypocrea jecorina: its binding interactions with substrate and cofactor. J. Mol. Graph Model. 28:707-713.
    • (2010) J. Mol. Graph Model. , vol.28 , pp. 707-713
    • Tiwari, M.1    Lee, J.K.2
  • 32
    • 0028357734 scopus 로고
    • Structural and mechanistic characteristics of dihydropteridine reductase: a member of the Tyr-(Xaa)3-Lys-containing family of reductases and dehydrogenases
    • Varughese KI, Xuong NH, Kiefer PM, Matthews DA, Whiteley JM. 1994. Structural and mechanistic characteristics of dihydropteridine reductase: a member of the Tyr-(Xaa)3-Lys-containing family of reductases and dehydrogenases. Proc. Natl. Acad. Sci. U. S. A. 91:5582-5586.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 5582-5586
    • Varughese, K.I.1    Xuong, N.H.2    Kiefer, P.M.3    Matthews, D.A.4    Whiteley, J.M.5
  • 33
    • 0040780150 scopus 로고    scopus 로고
    • Vibrio harveyi NADPH-FMN oxidoreductase arg203 as a critical residue for NADPH recognition and binding
    • Wang H, Lei B, Tu SC. 2000. Vibrio harveyi NADPH-FMN oxidoreductase arg203 as a critical residue for NADPH recognition and binding. Biochemistry 39:7813-7819.
    • (2000) Biochemistry , vol.39 , pp. 7813-7819
    • Wang, H.1    Lei, B.2    Tu, S.C.3
  • 34
    • 0030612722 scopus 로고    scopus 로고
    • The substitution of a single amino acid residue (Ser-116→Asp) alters NADP-containing glucosefructose oxidoreductase of Zymomonas mobilis into a glucose dehydrogenase with dual coenzyme specificity
    • Wiegert T, Sahm H, Sprenger GA. 1997. The substitution of a single amino acid residue (Ser-116→Asp) alters NADP-containing glucosefructose oxidoreductase of Zymomonas mobilis into a glucose dehydrogenase with dual coenzyme specificity. J. Biol. Chem. 272:13126-13133.
    • (1997) J. Biol. Chem. , vol.272 , pp. 13126-13133
    • Wiegert, T.1    Sahm, H.2    Sprenger, G.A.3
  • 35
    • 0023041821 scopus 로고
    • Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint
    • Wierenga RK, Terpstra P, Hol WG. 1986. Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J. Mol. Biol. 187:101-107.
    • (1986) J. Mol. Biol. , vol.187 , pp. 101-107
    • Wierenga, R.K.1    Terpstra, P.2    Hol, W.G.3
  • 36
    • 0141954197 scopus 로고    scopus 로고
    • Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design
    • Woodyer R, van der Donk WA, Zhao H. 2003. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Biochemistry 42:11604-11614.
    • (2003) Biochemistry , vol.42 , pp. 11604-11614
    • Woodyer, R.1    van der Donk, W.A.2    Zhao, H.3
  • 37
    • 0035110378 scopus 로고    scopus 로고
    • Crystal structure of glucose dehydrogenase from Bacillus megaterium IWG3 at 1.7 Å resolution
    • Yamamoto K, et al. 2001. Crystal structure of glucose dehydrogenase from Bacillus megaterium IWG3 at 1.7 Å resolution. J. Biochem. 129: 303-312.
    • (2001) J. Biochem. , vol.129 , pp. 303-312
    • Yamamoto, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.