메뉴 건너뛰기




Volumn 2, Issue 3, 2010, Pages 183-199

Stratified prototype selection based on a steady-state memetic algorithm: A study of scalability

Author keywords

Data reduction; Memetic algorithm; Nearest neighbor rule; Prototype selection; Scaling up; Stratification

Indexed keywords

MEMETIC ALGORITHM; NEAREST NEIGHBOR RULE; PROTOTYPE SELECTION; SCALING UP; STRATIFICATION;

EID: 77956666864     PISSN: 18659284     EISSN: 18659292     Source Type: Journal    
DOI: 10.1007/s12293-010-0048-1     Document Type: Article
Times cited : (30)

References (62)
  • 3
    • 35348902771 scopus 로고    scopus 로고
    • Fast nearest neighbor condensation for large data sets classification
    • Angiulli F (2007) Fast nearest neighbor condensation for large data sets classification. IEEE Trans Knowl Data Eng 19(11): 1450-1464.
    • (2007) IEEE Trans Knowl Data Eng , vol.19 , Issue.11 , pp. 1450-1464
    • Angiulli, F.1
  • 4
    • 67349105007 scopus 로고    scopus 로고
    • The memetic tree-based genetic algorithm and its application to portfolio optimization
    • Aranha C, Iba H (2009) The memetic tree-based genetic algorithm and its application to portfolio optimization. Memetic Comp 1(2): 139-151.
    • (2009) Memetic Comp , vol.1 , Issue.2 , pp. 139-151
    • Aranha, C.1    Iba, H.2
  • 6
    • 65149084519 scopus 로고    scopus 로고
    • Improving the scalability of rule-based evolutionary learning
    • Bacardit J, Burke E, Krasnogor N (2009) Improving the scalability of rule-based evolutionary learning. Memetic Comp 1(1): 55-67.
    • (2009) Memetic Comp , vol.1 , Issue.1 , pp. 55-67
    • Bacardit, J.1    Burke, E.2    Krasnogor, N.3
  • 7
    • 77956683775 scopus 로고    scopus 로고
    • Baluja S (1994) Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Tech Rep CMU-CS-94-163. Computer Science Department, Pittsburgh, PA.
  • 8
    • 0035575921 scopus 로고    scopus 로고
    • Nearest prototype classifier designs: An experimental study
    • Bezdek J, Kuncheva L (2001) Nearest prototype classifier designs: an experimental study. Int J Intell Syst 16(12): 1445-1473.
    • (2001) Int J Intell Syst , vol.16 , Issue.12 , pp. 1445-1473
    • Bezdek, J.1    Kuncheva, L.2
  • 9
    • 33845982223 scopus 로고    scopus 로고
    • Evolutionary stratified training set selection for extracting classification rules with trade-off precision-interpretability
    • Cano J, Lozano FHM (2007) Evolutionary stratified training set selection for extracting classification rules with trade-off precision-interpretability. Data Knowl Eng 60: 90-100.
    • (2007) Data Knowl Eng , vol.60 , pp. 90-100
    • Cano, J.1    Lozano, F.H.M.2
  • 10
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
    • Cano JR, Herrera F, Lozano M (2003) Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study. IEEE Trans Evol Comput 7(6): 561-575.
    • (2003) IEEE Trans Evol Comput , vol.7 , Issue.6 , pp. 561-575
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 11
    • 17444379003 scopus 로고    scopus 로고
    • Stratification for scaling up evolutionary prototype selection
    • Cano JR, Herrera F, Lozano M (2005) Stratification for scaling up evolutionary prototype selection. Pattern Recognit Lett 26(7): 953-963.
    • (2005) Pattern Recognit Lett , vol.26 , Issue.7 , pp. 953-963
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 12
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1): 37-46.
    • (1960) Educ Psychol Meas , vol.20 , Issue.1 , pp. 37-46
    • Cohen, J.1
  • 13
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1): 21-27.
    • (1967) IEEE Trans Inf Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 14
    • 70350653805 scopus 로고    scopus 로고
    • A taxonomy of similarity mechanisms for case-based reasoning
    • Cunningham P (2008) A taxonomy of similarity mechanisms for case-based reasoning. IEEE Trans Knowl Data Eng 21(11): 1532-1543.
    • (2008) IEEE Trans Knowl Data Eng , vol.21 , Issue.11 , pp. 1532-1543
    • Cunningham, P.1
  • 15
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7: 1-30.
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demšar, J.1
  • 17
    • 0001334115 scopus 로고
    • The CHC adaptative search algorithm: How to have safe search when engaging in nontraditional genetic recombination
    • G. J. E. Rawlins (Ed.), San Mateo: Morgan Kaufmann
    • Eshelman LJ (1991) The CHC adaptative search algorithm: how to have safe search when engaging in nontraditional genetic recombination. In: Rawlins GJE (eds) Foundations of genetic algorithms. Morgan Kaufmann, San Mateo, pp 265-283.
    • (1991) Foundations of Genetic Algorithms , pp. 265-283
    • Eshelman, L.J.1
  • 18
    • 65649094450 scopus 로고    scopus 로고
    • Solving the routing and wavelength assignment problem with a multilevel distributed memetic algorithm
    • Fischer T, Bauer K, Merz P, Bauer K (2009) Solving the routing and wavelength assignment problem with a multilevel distributed memetic algorithm. Memetic Comp 1(2): 101-123.
    • (2009) Memetic Comp , vol.1 , Issue.2 , pp. 101-123
    • Fischer, T.1    Bauer, K.2    Merz, P.3    Bauer, K.4
  • 19
    • 0027701744 scopus 로고
    • What makes a problem hard for a genetic algorithm? some anomalous results and their explanation
    • Forrest S, Mitchell M (1993) What makes a problem hard for a genetic algorithm? some anomalous results and their explanation. Mach Learn 13(2-3): 285-319.
    • (1993) Mach Learn , vol.13 , Issue.2-3 , pp. 285-319
    • Forrest, S.1    Mitchell, M.2
  • 21
    • 64549120231 scopus 로고    scopus 로고
    • A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability
    • García S, Herrera F (2009) A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput 13(10): 959-977.
    • (2009) Soft Comput , vol.13 , Issue.10 , pp. 959-977
    • García, S.1    Herrera, F.2
  • 22
    • 42749092345 scopus 로고    scopus 로고
    • A memetic algorithm for evolutionary prototype selection: A scaling up approach
    • García S, Cano JR, Herrera F (2008) A memetic algorithm for evolutionary prototype selection: a scaling up approach. Pattern Recognit 41(8): 2693-2709.
    • (2008) Pattern Recognit , vol.41 , Issue.8 , pp. 2693-2709
    • García, S.1    Cano, J.R.2    Herrera, F.3
  • 23
    • 33750700010 scopus 로고    scopus 로고
    • A. Ghosh and L. C. Jain (Eds.), New York: Springer-Verlag
    • Ghosh, A, Jain, LC (eds) (2005) Evolutionary computation in data mining. Springer-Verlag, New York.
    • (2005) Evolutionary Computation in Data Mining
  • 24
    • 58449124909 scopus 로고    scopus 로고
    • Evolving edited k-nearest neighbor classifiers
    • Gil-Pita R, Yao X (2008) Evolving edited k-nearest neighbor classifiers. Int J Neural Syst 18(6): 459-467.
    • (2008) Int J Neural Syst , vol.18 , Issue.6 , pp. 459-467
    • Gil-Pita, R.1    Yao, X.2
  • 25
    • 33745891586 scopus 로고    scopus 로고
    • I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh (Eds.), New York: Springer
    • Guyon, I, Gunn, S, Nikravesh, M, Zadeh, LA (eds) (2006) Feature extraction: foundations and applications. Springer, New York.
    • (2006) Feature Extraction: Foundations and Applications
  • 26
    • 65049087517 scopus 로고    scopus 로고
    • A divide-and-conquer recursive approach for scaling up instance selection algorithms
    • de Haro-García A, García-Pedrajas N (2009) A divide-and-conquer recursive approach for scaling up instance selection algorithms. Data Min Knowl Discov 18(3): 392-418.
    • (2009) Data Min Knowl Discov , vol.18 , Issue.3 , pp. 392-418
    • de Haro-García, A.1    García-Pedrajas, N.2
  • 27
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • Hart PE (1968) The condensed nearest neighbor rule. IEEE Trans Inf Theory 14(3): 515-516.
    • (1968) IEEE Trans Inf Theory , vol.14 , Issue.3 , pp. 515-516
    • Hart, P.E.1
  • 28
    • 77956684717 scopus 로고    scopus 로고
    • Hart WE (1994) Adaptive global optimization with local search. PhD thesis, University of California, San Diego.
  • 29
    • 17444407285 scopus 로고    scopus 로고
    • W. E. Hart, N. Krasnogor, and J. E. Smith (Eds.), New York: Springer-Verlag
    • Hart, WE, Krasnogor, N, Smith, JE (eds) (2005) Recent advances in memetic algorithms. Springer-Verlag, New York.
    • (2005) Recent Advances in Memetic Algorithms
  • 30
    • 65149102896 scopus 로고    scopus 로고
    • Memetic algorithms for solving job-shop scheduling problems
    • Hasan SMK, Sarker R, Essam D, Cornforth D (2009) Memetic algorithms for solving job-shop scheduling problems. Memetic Comp 1(1): 69-83.
    • (2009) Memetic Comp , vol.1 , Issue.1 , pp. 69-83
    • Hasan, S.M.K.1    Sarker, R.2    Essam, D.3    Cornforth, D.4
  • 31
    • 0036832996 scopus 로고    scopus 로고
    • Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm
    • Ho SY, Liu CC, Liu S (2002) Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm. Pattern Recognit Lett 23(13): 1495-1503.
    • (2002) Pattern Recognit Lett , vol.23 , Issue.13 , pp. 1495-1503
    • Ho, S.Y.1    Liu, C.C.2    Liu, S.3
  • 32
    • 58249083148 scopus 로고    scopus 로고
    • A scalable framework for cluster ensembles
    • Hore P, Hall LO, Goldgof DB (2009) A scalable framework for cluster ensembles. Pattern Recognit 42(5): 676-688.
    • (2009) Pattern Recognit , vol.42 , Issue.5 , pp. 676-688
    • Hore, P.1    Hall, L.O.2    Goldgof, D.B.3
  • 33
    • 84956859473 scopus 로고    scopus 로고
    • Ishibuchi H, Nakashima T (1998) Evolution of reference sets in nearest neighbor classification. In: Second Asia-Pacific conference on simulated evolution and learning on simulated evolution and learning (SEAL'98). Lecture notes in computer science, vol 1585, pp 82-89.
  • 34
    • 9444236865 scopus 로고    scopus 로고
    • Jankowski N, Grochowski M (2004) Comparison of instances selection algorithms I. Algorithms survey. In: Rutkowski L (ed) International conference on artificial intelligence and soft computing (IAISC'04). LNAI, vol 3070, pp 598-603.
  • 35
    • 0346331906 scopus 로고    scopus 로고
    • On using prototype reduction schemes to optimize dissimilarity-based classification
    • Kim SW, Oommen BJ (2003) On using prototype reduction schemes to optimize dissimilarity-based classification. Pattern Anal Appl 6(3): 232-244.
    • (2003) Pattern Anal Appl , vol.6 , Issue.3 , pp. 232-244
    • Kim, S.W.1    Oommen, B.J.2
  • 36
    • 27344452492 scopus 로고    scopus 로고
    • A tutorial for competent memetic algorithms: Model, taxonomy, and design issues
    • Krasnogor N, Smith J (2005) A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans Evol Comput 9(5): 474-488.
    • (2005) IEEE Trans Evol Comput , vol.9 , Issue.5 , pp. 474-488
    • Krasnogor, N.1    Smith, J.2
  • 37
    • 0000935031 scopus 로고
    • Editing for the k-nearest neighbors rule by a genetic algorithm
    • Kuncheva LI (1995) Editing for the k-nearest neighbors rule by a genetic algorithm. Pattern Recognit Lett 16: 809-814.
    • (1995) Pattern Recognit Lett , vol.16 , pp. 809-814
    • Kuncheva, L.I.1
  • 38
    • 0031999908 scopus 로고    scopus 로고
    • Nearest prototype classification: Clustering, genetic algorithms, or random search?
    • Kuncheva LI, Bezdek JC (1998) Nearest prototype classification: clustering, genetic algorithms, or random search?. IEEE Trans Syst Man Cybernet C 28(1): 160-164.
    • (1998) IEEE Trans Syst Man Cybernet C , vol.28 , Issue.1 , pp. 160-164
    • Kuncheva, L.I.1    Bezdek, J.C.2
  • 39
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • Lim TS, Loh WY, Shih YS (2000) A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach Learn 40(3): 203-228.
    • (2000) Mach Learn , vol.40 , Issue.3 , pp. 203-228
    • Lim, T.S.1    Loh, W.Y.2    Shih, Y.S.3
  • 41
    • 0141688336 scopus 로고    scopus 로고
    • On issues of instance selection
    • Liu H, Motoda H (2002) On issues of instance selection. Data Min Knowl Discov 6(2): 115-130.
    • (2002) Data Min Knowl Discov , vol.6 , Issue.2 , pp. 115-130
    • Liu, H.1    Motoda, H.2
  • 44
    • 54549105599 scopus 로고    scopus 로고
    • A fast and scalable recurrent neural network based on stochastic meta descent
    • Liu Z, Elhanany I (2008) A fast and scalable recurrent neural network based on stochastic meta descent. IEEE Trans Neural Netw 19(9): 1652-1658.
    • (2008) IEEE Trans Neural Netw , vol.19 , Issue.9 , pp. 1652-1658
    • Liu, Z.1    Elhanany, I.2
  • 45
    • 4544245255 scopus 로고    scopus 로고
    • Real-coded memetic algorithms with crossover hill-climbing
    • Lozano M, Herrera F, Krasnogor N, Molina D (2004) Real-coded memetic algorithms with crossover hill-climbing. Evol Comput 12(3): 273-302.
    • (2004) Evol Comput , vol.12 , Issue.3 , pp. 273-302
    • Lozano, M.1    Herrera, F.2    Krasnogor, N.3    Molina, D.4
  • 46
    • 33745421067 scopus 로고    scopus 로고
    • Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces
    • Lozano M, Sotoca JM, Sánchez JS, Pla F, Pekalska E, Duin RPW (2006) Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces. Pattern Recognit 39(10): 1827-1838.
    • (2006) Pattern Recognit , vol.39 , Issue.10 , pp. 1827-1838
    • Lozano, M.1    Sotoca, J.M.2    Sánchez, J.S.3    Pla, F.4    Pekalska, E.5    Duin, R.P.W.6
  • 47
    • 46249122128 scopus 로고    scopus 로고
    • Hit miss networks with applications to instance selection
    • Marchiori E (2008) Hit miss networks with applications to instance selection. J Mach Learn Res 9: 997-1017.
    • (2008) J Mach Learn Res , vol.9 , pp. 997-1017
    • Marchiori, E.1
  • 48
    • 77956655457 scopus 로고    scopus 로고
    • Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Tech Rep C3P 826, California Institute of Technology, Pasadena.
  • 49
    • 77951767444 scopus 로고    scopus 로고
    • Olvera-López JA, Carrasco-Ochoa JA, Martínez-Trinidad JF (2009) A new fast prototype selection method based on clustering. Pattern Anal Appl (in press). doi: 10. 1007/s10044-008-0142-x.
  • 52
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive algorithms
    • Provost FJ, Kolluri V (1999) A survey of methods for scaling up inductive algorithms. Data Min Knowl Discov 3(2): 131-169.
    • (1999) Data Min Knowl Discov , vol.3 , Issue.2 , pp. 131-169
    • Provost, F.J.1    Kolluri, V.2
  • 54
    • 0016569790 scopus 로고
    • An algorithm for a selective nearest neighbor decision rule
    • Ritter G, Woodruff H, Lowry S, Isenhour T (1975) An algorithm for a selective nearest neighbor decision rule. IEEE Trans Inf Theory 21(6): 665-669.
    • (1975) IEEE Trans Inf Theory , vol.21 , Issue.6 , pp. 665-669
    • Ritter, G.1    Woodruff, H.2    Lowry, S.3    Isenhour, T.4
  • 57
    • 23044528412 scopus 로고    scopus 로고
    • Sierra B, Lazkano E, Inza I, Merino M, Larrañaga P, Quiroga J (2001) Prototype selection and feature subset selection by estimation of distribution algorithms. A case study in the survival of cirrhotic patients treated with tips. In: Proceedings of the 8th conference on AI in medicine in Europe (AIME'01). Springer-Verlag, London, pp 20-29.
  • 58
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6): 80-83.
    • (1945) Biom Bull , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 59
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • Wilson DL (1972) Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans Syst Man Cybernet 2(3): 408-421.
    • (1972) IEEE Trans Syst Man Cybernet , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 60
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson DR, Martinez TR (2000) Reduction techniques for instance-based learning algorithms. Mach Learn 38(3): 257-286.
    • (2000) Mach Learn , vol.38 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 62
    • 0004252445 scopus 로고    scopus 로고
    • 5th edn., Upper Saddle River: Prentice Hall
    • Zar JH (2009) Biostatistical analysis, 5th edn. Prentice Hall, Upper Saddle.
    • (2009) Biostatistical Analysis
    • Zar, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.