메뉴 건너뛰기




Volumn 43, Issue 6, 2010, Pages 2292-2300

Prototype selection algorithms for distributed learning

Author keywords

Data reduction; Distributed data mining; Distributed learning; Instance selection

Indexed keywords

AGENT BASED; AGENT COLLABORATION; BASIC PROPERTIES; COMPUTATIONAL EXPERIMENT; COMPUTATIONAL PROBLEM; DATA CLUSTERS; DISTRIBUTED DATA; DISTRIBUTED DATA MINING; DISTRIBUTED DATABASE; DISTRIBUTED LEARNING; DISTRIBUTED SITES; GLOBAL KNOWLEDGE; GLOBAL MODELS; INSTANCE SELECTION; LOCAL PATTERNS; POPULATION LEARNING ALGORITHMS; PROTOTYPE SELECTION;

EID: 76749097995     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2010.01.006     Document Type: Article
Times cited : (18)

References (53)
  • 3
    • 36948999941 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine, CA
    • A. Asuncion, D.J. Newman, UCI machine learning repository 〈http://www.ics.uci.edu/mlearn/MLRepository.html〉. University of California, School of Information and Computer Science, Irvine, CA, 2007.
    • (2007) UCI machine learning repository
    • Asuncion, A.1    Newman, D.J.2
  • 7
    • 84930181890 scopus 로고    scopus 로고
    • Learning from multiple Beyesian networks for revision and refinement of expert systems
    • M. Jarke, J. Koehler, G. Lekemeyer Eds, Aachen
    • M. Borth, Learning from multiple Beyesian networks for revision and refinement of expert systems, in: M. Jarke, J. Koehler, G. Lekemeyer (Eds.), Proceedings of the 25th Annual German Conference on AI, Aachen, 2002, pp. 82-96.
    • (2002) Proceedings of the 25th Annual German Conference on AI , pp. 82-96
    • Borth, M.1
  • 9
    • 33644641221 scopus 로고    scopus 로고
    • On the combination of evolutionary algorithms and stratified strategies for training set selection in data mining
    • Cano J.R., Herrera F., and Lozano M. On the combination of evolutionary algorithms and stratified strategies for training set selection in data mining. Applied Soft Computing 6 (2004) 323-332
    • (2004) Applied Soft Computing , vol.6 , pp. 323-332
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 10
    • 19544373409 scopus 로고    scopus 로고
    • A framework for learning from distributed data using sufficient statistics and its application to learning decision trees
    • Caragea D., Silvescu A., and Honavar V. A framework for learning from distributed data using sufficient statistics and its application to learning decision trees. International Journal of Hybrid Intelligent Systems 1 1-2 (2003) 80-89
    • (2003) International Journal of Hybrid Intelligent Systems , vol.1 , Issue.1-2 , pp. 80-89
    • Caragea, D.1    Silvescu, A.2    Honavar, V.3
  • 12
    • 37249006162 scopus 로고    scopus 로고
    • An approach to instance reduction in supervised learning
    • Coenen F., Preece A., and Macintosh A. (Eds), Springer, London
    • Czarnowski I., and Jedrzejowicz P. An approach to instance reduction in supervised learning. In: Coenen F., Preece A., and Macintosh A. (Eds). Research and Development in Intelligent Systems, vol. XX (2004), Springer, London 267-282
    • (2004) Research and Development in Intelligent Systems, vol. XX , pp. 267-282
    • Czarnowski, I.1    Jedrzejowicz, P.2
  • 14
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M., and Liu H. Feature selection for classification. Intelligence Data Analysis 1 3 (1997) 131-156
    • (1997) Intelligence Data Analysis , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 16
    • 0001790815 scopus 로고
    • Knowledge discovery in databases-an overview
    • Piatetsky-Shapiro G., and Matheus C. (Eds), AAAI/MIT Press
    • Frawley W.J., Piatetsky-Shapiro G., and Matheus C. Knowledge discovery in databases-an overview. In: Piatetsky-Shapiro G., and Matheus C. (Eds). Knowledge Discovery in Databases (1991), AAAI/MIT Press
    • (1991) Knowledge Discovery in Databases
    • Frawley, W.J.1    Piatetsky-Shapiro, G.2    Matheus, C.3
  • 20
    • 77954607124 scopus 로고    scopus 로고
    • Y. Hamo, S. Markovitch, The COMPSET algorithm for subset selection, in: Proceedings of the Nineteenth International Joint Conference for Artificial Intelligence, Edinburgh, Scotland, 2005, pp. 728-733.
    • Y. Hamo, S. Markovitch, The COMPSET algorithm for subset selection, in: Proceedings of the Nineteenth International Joint Conference for Artificial Intelligence, Edinburgh, Scotland, 2005, pp. 728-733.
  • 23
    • 0002113656 scopus 로고    scopus 로고
    • Social learning algorithm as a tool for solving some difficult scheduling problems
    • Jedrzejowicz P. Social learning algorithm as a tool for solving some difficult scheduling problems. Foundation of Computing and Decision Sciences 24 (1999) 51-66
    • (1999) Foundation of Computing and Decision Sciences , vol.24 , pp. 51-66
    • Jedrzejowicz, P.1
  • 24
    • 1142305142 scopus 로고    scopus 로고
    • M. Klusch, S. Lodi, G-L Moro, Agent-based distributed data mining: the KDEC scheme, in: M. Klusch, S. Bergamaschi, P. Edwards, P. Petta (Eds.) Intelligent Information Agents: The AgentLink Perspective, Lecture Notes in Artificial Intelligence, 2586, Springer, 2003, pp. 104-122.
    • M. Klusch, S. Lodi, G-L Moro, Agent-based distributed data mining: the KDEC scheme, in: M. Klusch, S. Bergamaschi, P. Edwards, P. Petta (Eds.) Intelligent Information Agents: The AgentLink Perspective, Lecture Notes in Artificial Intelligence, vol. 2586, Springer, 2003, pp. 104-122.
  • 25
    • 84876924991 scopus 로고    scopus 로고
    • S. Krishnaswamy, A. Zaslavsky, S.W. Loke, Techniques for estimating the computation and communication costs of distributed data mining, in: P.M.A. Sloot, et al. (Eds.), ICCS 2002, Lecture Notes in Computer Science, 2329, 2002, pp. 603-612.
    • S. Krishnaswamy, A. Zaslavsky, S.W. Loke, Techniques for estimating the computation and communication costs of distributed data mining, in: P.M.A. Sloot, et al. (Eds.), ICCS 2002, Lecture Notes in Computer Science, vol. 2329, 2002, pp. 603-612.
  • 31
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • University of California Press, Berkeley
    • J. B. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, University of California Press, Berkeley, 1967, pp. 281-297.
    • (1967) Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 32
    • 31144448615 scopus 로고    scopus 로고
    • Using simulated annealing to optimize the feature selection problem in marketing applications
    • Meiri R., and Zahavi J. Using simulated annealing to optimize the feature selection problem in marketing applications. European Journal of Operational Research 17 3 (2006) 842-858
    • (2006) European Journal of Operational Research , vol.17 , Issue.3 , pp. 842-858
    • Meiri, R.1    Zahavi, J.2
  • 35
    • 0002522158 scopus 로고    scopus 로고
    • Meta-learning in distributed data mining systems: issues and approaches
    • Kargupta H., and Chan P. (Eds), AAAI/MIT Press
    • Prodromidis A., Chan P.K., and Stolfos S.J. Meta-learning in distributed data mining systems: issues and approaches. In: Kargupta H., and Chan P. (Eds). Advances in Distributed and Parallel Knowledge Discovery vol. 3 (2000), AAAI/MIT Press
    • (2000) Advances in Distributed and Parallel Knowledge Discovery , vol.3
    • Prodromidis, A.1    Chan, P.K.2    Stolfos, S.J.3
  • 37
    • 85031805477 scopus 로고
    • Extending learning to multiple agents: issues and a model for multi-agent machine learning (ma-ml)
    • Kodratoff Y. (Ed), Springer-Verlag
    • Sian S. Extending learning to multiple agents: issues and a model for multi-agent machine learning (ma-ml). In: Kodratoff Y. (Ed). Machine Learning-EWSL-91 (1991), Springer-Verlag 440-456
    • (1991) Machine Learning-EWSL-91 , pp. 440-456
    • Sian, S.1
  • 40
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill climbing algorithm
    • D.B. Skalak, Prototype and feature selection by sampling and random mutation hill climbing algorithm, in: Proceedings of the International Conference on Machine Learning, 1994, pp. 293-301.
    • (1994) Proceedings of the International Conference on Machine Learning , pp. 293-301
    • Skalak, D.B.1
  • 41
    • 0020848605 scopus 로고
    • Asynchronous procedures for parallel processing
    • Talukdar S.N., Pyo S.S., and Giras T. Asynchronous procedures for parallel processing. IEEE Transactions on PAS PAS-102 11 (1983) 3652-3659
    • (1983) IEEE Transactions on PAS , vol.PAS-102 , Issue.11 , pp. 3652-3659
    • Talukdar, S.N.1    Pyo, S.S.2    Giras, T.3
  • 42
    • 47249091054 scopus 로고    scopus 로고
    • The European Network of Excellence on Intelligence Technologies for Smart Adaptive Systems EUNITE
    • The European Network of Excellence on Intelligence Technologies for Smart Adaptive Systems (EUNITE)-EUNITE World Competition in domain of Intelligent Technologies-〈http://neuron.tuke.sk/competition2〉, 2002.
    • (2002) EUNITE World Competition in domain of Intelligent Technologies
  • 45
    • 2342557114 scopus 로고    scopus 로고
    • Clustering classifiers for knowledge discovery from physical distributed database
    • Tsoumakas G., Angelis L., and Vlahavas I. Clustering classifiers for knowledge discovery from physical distributed database. Data and Knowledge Engineering 49 3 (2004)
    • (2004) Data and Knowledge Engineering , vol.49 , Issue.3
    • Tsoumakas, G.1    Angelis, L.2    Vlahavas, I.3
  • 46
    • 0037909280 scopus 로고    scopus 로고
    • A framework for finding distributed data mining strategies that are intermediate between centralised strategies and in-place strategies
    • A.L. Turinsky, R.L. Grossman, A framework for finding distributed data mining strategies that are intermediate between centralised strategies and in-place strategies, in: Proceedings of the KDD Workshop on Distributed Data Mining, 2000.
    • (2000) Proceedings of the KDD Workshop on Distributed Data Mining
    • Turinsky, A.L.1    Grossman, R.L.2
  • 48
    • 76749147634 scopus 로고    scopus 로고
    • Using instance selection to combine multiple models learned from disjoint subsets
    • Liu H., and Motoda H. (Eds), Kluwer Scientific Publisher
    • Winton D., and Pete E. Using instance selection to combine multiple models learned from disjoint subsets. In: Liu H., and Motoda H. (Eds). Instance Selection and Construction for Data Mining (2001), Kluwer Scientific Publisher
    • (2001) Instance Selection and Construction for Data Mining
    • Winton, D.1    Pete, E.2
  • 49
    • 0026692226 scopus 로고
    • Stacked generalisation
    • Wolpert D. Stacked generalisation. Neural Networks 5 (1992) 241-259
    • (1992) Neural Networks , Issue.5 , pp. 241-259
    • Wolpert, D.1
  • 50
    • 47249124223 scopus 로고    scopus 로고
    • Mining local data sources for learning global cluster model via local model exchange
    • Zhang X.F., Lam C.M., and Cheung W.K. Mining local data sources for learning global cluster model via local model exchange. IEEE Intelligence Informatics Bulletin 4 2 (2004) 748-751
    • (2004) IEEE Intelligence Informatics Bulletin , vol.4 , Issue.2 , pp. 748-751
    • Zhang, X.F.1    Lam, C.M.2    Cheung, W.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.