메뉴 건너뛰기




Volumn 7267 LNAI, Issue PART 1, 2012, Pages 256-265

Fuzzy supervised self-organizing map for semi-supervised vector quantization

Author keywords

[No Author keywords available]

Indexed keywords

CLASS LABELS; DATA SPACE; DISSIMILARITY MEASURES; FUZZY CLASS; FUZZY CLASSIFICATION; GRADIENT DESCENT; IMAGE CUBE; NEURAL GAS; ORIGINAL ALGORITHMS; REMOTE SENSING DATA; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; SUPERVISED CLASSIFICATION; SUPERVISED SELF-ORGANIZING MAP; VECTOR QUANTIZERS;

EID: 84861082187     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-29347-4_30     Document Type: Conference Paper
Times cited : (7)

References (21)
  • 1
    • 0032784636 scopus 로고    scopus 로고
    • Neural maps and topographic vector quantization
    • Bauer, H.-U., Herrmann, M., Villmann, T.: Neural maps and topographic vector quantization. Neural Networks 12(4-5), 659-676 (1999)
    • (1999) Neural Networks , vol.12 , Issue.4-5 , pp. 659-676
    • Bauer, H.-U.1    Herrmann, M.2    Villmann, T.3
  • 2
    • 77649237600 scopus 로고    scopus 로고
    • Median fuzzy c-means for clustering dissimilarity data
    • Geweniger, T., Zühlke, D., Hammer, B., Villmann, T.: Median fuzzy c-means for clustering dissimilarity data. Neurocomputing 73(7-9), 1109-1116 (2010)
    • (2010) Neurocomputing , vol.73 , Issue.7-9 , pp. 1109-1116
    • Geweniger, T.1    Zühlke, D.2    Hammer, B.3    Villmann, T.4
  • 3
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8-9), 1059-1068 (2002)
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 4
    • 0002059002 scopus 로고    scopus 로고
    • Energy functions for self-organizing maps
    • Oja, E., Kaski, S. (eds.). Elsevier, Amsterdam
    • Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, pp. 303-316. Elsevier, Amsterdam (1999)
    • (1999) Kohonen Maps , pp. 303-316
    • Heskes, T.1
  • 5
    • 84861032671 scopus 로고    scopus 로고
    • Functional relevance learning in generalized learning vector quantization
    • ISSN:1865-3960
    • Kästner, M., Villmann, T.: Functional relevance learning in generalized learning vector quantization. Machine Learning Reports 5(MLR-01-2011), 81-89 (2011), http://www.techfak.uni-bielefeld.de/~fschleif/mlr/ mlr-01-2011.pdf ISSN:1865-3960
    • (2011) Machine Learning Reports 5(MLR-01-2011) , pp. 81-89
    • Kästner, M.1    Villmann, T.2
  • 6
    • 84947743158 scopus 로고    scopus 로고
    • Fuzzy supervised neural gas for semi-supervised vector quantization - Theoretical aspects
    • ISSN:1865-3960
    • Kästner, M., Villmann, T.: Fuzzy supervised neural gas for semi-supervised vector quantization - theoretical aspects. Machine Learning Reports 5(MLR-02-2011), 1-16 (2011), http://www.techfak.uni-bielefeld.de/ ~fschleif/mlr/mlr$-$-011.pdf ISSN:1865-3960
    • (2011) Machine Learning Reports 5(MLR-02-2011) , pp. 1-16
    • Kästner, M.1    Villmann, T.2
  • 7
    • 0003209045 scopus 로고
    • Self-organizing maps
    • Springer, Heidelberg (Second Extended Edition)
    • Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1995) (Second Extended Edition 1997)
    • (1995) Springer Series in Information Sciences , vol.30
    • Kohonen, T.1
  • 8
    • 84890262130 scopus 로고    scopus 로고
    • p norm for time series and its application to self-organizing maps
    • Cottrell, M. (ed.), WSOM 2005, Paris, Sorbonne
    • p norm for time series and its application to self-organizing maps. In: Cottrell, M. (ed.) Proc. of Workshop on Self- Organizing Maps, WSOM 2005, Paris, Sorbonne, pp. 733-740 (2005)
    • (2005) Proc. of Workshop on Self- Organizing Maps , pp. 733-740
    • Lee, J.1    Verleysen, M.2
  • 9
    • 0027632248 scopus 로고
    • 'Neural-gas' network for vector quantization and its application to time-series prediction
    • Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: 'Neural-gas' network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks 4(4), 558-569 (1993)
    • (1993) IEEE Trans. on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 10
    • 0028167318 scopus 로고
    • Learning associations by self-organizatiom: The LASSO model
    • Midenet, S., Grumbach, A.: Learning associations by self-organizatiom: the LASSO model. Neurocomputing 6, 343-361 (1994)
    • (1994) Neurocomputing , vol.6 , pp. 343-361
    • Midenet, S.1    Grumbach, A.2
  • 13
    • 78049376984 scopus 로고    scopus 로고
    • Generalized derivative based kernelized learning vector quantization
    • Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds.) IDEAL 2010. Springer, Heidelberg
    • Schleif, F.-M., Villmann, T., Hammer, B., Schneider, P., Biehl, M.: Generalized Derivative Based Kernelized Learning Vector Quantization. In: Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds.) IDEAL 2010. LNCS, vol. 6283, pp. 21-28. Springer, Heidelberg (2010)
    • (2010) LNCS , vol.6283 , pp. 21-28
    • Schleif, F.-M.1    Villmann, T.2    Hammer, B.3    Schneider, P.4    Biehl, M.5
  • 14
    • 72249111970 scopus 로고    scopus 로고
    • Adaptive relevance matrices in learning vector quantization
    • Schneider, P., Hammer, B., Biehl, M.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21, 3532-3561 (2009)
    • (2009) Neural Computation , vol.21 , pp. 3532-3561
    • Schneider, P.1    Hammer, B.2    Biehl, M.3
  • 15
    • 0031097231 scopus 로고    scopus 로고
    • Topology preservation in self- organizing feature maps: Exact definition and measurement
    • Villmann, T., Der, R., Herrmann, M., Martinetz, T.: Topology Preservation in Self- Organizing Feature Maps: Exact Definition and Measurement. IEEE Transactions on Neural Networks 8(2), 256-266 (1997)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.2 , pp. 256-266
    • Villmann Der, T.R.1    Herrmann, M.2    Martinetz, T.3
  • 16
    • 79958244935 scopus 로고    scopus 로고
    • Divergence based vector quantization
    • Villmann, T., Haase, S.: Divergence based vector quantization. Neural Computation 23(5), 1343-1392 (2011)
    • (2011) Neural Computation , vol.23 , Issue.5 , pp. 1343-1392
    • Villmann, T.1    Haase, S.2
  • 18
    • 0037379640 scopus 로고    scopus 로고
    • Neural maps in remote sensing image analysis
    • Villmann, T., Merényi, E., Hammer, B.: Neural maps in remote sensing image analysis. Neural Networks 16(3-4), 389-403 (2003)
    • (2003) Neural Networks , vol.16 , Issue.3-4 , pp. 389-403
    • Villmann, T.1    Merényi, E.2    Hammer, B.3
  • 20
    • 38049108062 scopus 로고    scopus 로고
    • Fuzzy labeled self- organizing map for classification of spectra
    • Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. Springer, Heidelberg
    • Villmann, T., Schleif, F.-M., Merenyi, E., Hammer, B.: Fuzzy Labeled Self- Organizing Map for Classification of Spectra. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 556-563. Springer, Heidelberg (2007)
    • (2007) LNCS , vol.4507 , pp. 556-563
    • Villmann, T.1    Schleif, F.-M.2    Merenyi, E.3    Hammer, B.4
  • 21
    • 33749378695 scopus 로고    scopus 로고
    • Fuzzy labeled self-organizing map with label-adjusted prototypes
    • Schwenker, F., Marinai, S. (eds.) ANNPR 2006. Springer, Heidelberg
    • Villmann, T., Seiffert, U., Schleif, F.-M., Brüß, C., Geweniger, T., Hammer, B.: Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes. In: Schwenker, F., Marinai, S. (eds.) ANNPR 2006. LNCS (LNAI), vol. 4087, pp. 46-56. Springer, Heidelberg (2006)
    • (2006) LNCS (LNAI) , vol.4087 , pp. 46-56
    • Villmann, T.1    Seiffert, U.2    Schleif, F.-M.3    Brüß, C.4    Geweniger, T.5    Hammer, B.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.