메뉴 건너뛰기




Volumn 16, Issue 3-4, 2003, Pages 389-403

Neural maps in remote sensing image analysis

Author keywords

Generalized relevance learning vector quantization; Image analysis; Remote sensing; Self organizing map

Indexed keywords

IMAGE ANALYSIS; IMAGING TECHNIQUES; REMOTE SENSING; SPECTROMETERS; VECTOR QUANTIZATION;

EID: 0037379640     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(03)00021-2     Document Type: Article
Times cited : (151)

References (64)
  • 1
  • 3
    • 0001449448 scopus 로고    scopus 로고
    • Controlling the magnification factor of self-organizing feature maps
    • Bauer H.-U., Der R., Herrmann M. Controlling the magnification factor of self-organizing feature maps. Neural Computation. 8:(4):1996;757-771.
    • (1996) Neural Computation , vol.8 , Issue.4 , pp. 757-771
    • Bauer, H.-U.1    Der, R.2    Herrmann, M.3
  • 4
    • 0026898892 scopus 로고
    • Quantifying the neighborhood preservation of self-organizing feature maps
    • Bauer H.-U., Pawelzik K.R. Quantifying the neighborhood preservation of self-organizing feature maps. IEEE Transactions on Neural Networks. 3:(4):1992;570-579.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.4 , pp. 570-579
    • Bauer, H.-U.1    Pawelzik, K.R.2
  • 5
    • 0031101545 scopus 로고    scopus 로고
    • Growing a hypercubical output space in a self-organizing feature map
    • Bauer H.-U., Villmann T. Growing a hypercubical output space in a self-organizing feature map. IEEE Transactions on Neural Networks. 8:(2):1997;218-226.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.2 , pp. 218-226
    • Bauer, H.-U.1    Villmann, T.2
  • 6
    • 0010932143 scopus 로고
    • Classification of very-high-dimensional data with geological applications
    • Germany: Lenggries
    • Benediktsson J. A., Sveinsson, J. R., et al (1994). Classification of very-high-dimensional data with geological applications. Proceedings of MAC Europe 91 (pp. 13-18), Germany: Lenggries.
    • (1994) Proceedings of MAC Europe , vol.91 , pp. 13-18
    • Benediktsson, J.A.1    Sveinsson, J.R.2
  • 9
    • 85031208995 scopus 로고
    • Some new competitive learning schemes
    • Applications and Science of Artificial Neural Networks Conference, 17-21 April 1995, Orlando, FL, SPIE
    • Bezdek, J. C., Pal, N. R., Hathaway, R. J., & Karayiannis, N. B (1995). Some new competitive learning schemes. Proceedings of the SPIE - The International Society for Optical Engineering 2492 (pt. 1) (pp. 538-549) (Applications and Science of Artificial Neural Networks Conference, 17-21 April 1995, Orlando, FL, SPIE).
    • (1995) Proceedings of the SPIE - The International Society for Optical Engineering , vol.2492 , Issue.PART. 1 , pp. 538-549
    • Bezdek, J.C.1    Pal, N.R.2    Hathaway, R.J.3    Karayiannis, N.B.4
  • 15
    • 0002443314 scopus 로고    scopus 로고
    • Spectroscopy of rocks and minerals, and principles of spectroscopy
    • A. Rencz. New York: Wiley
    • Clark R.N. Spectroscopy of rocks and minerals, and principles of spectroscopy. Rencz A. Manual of remote sensing. 1999;Wiley, New York.
    • (1999) Manual of remote sensing
    • Clark, R.N.1
  • 18
    • 0026436795 scopus 로고
    • Self-organizing maps: Ordering, convergence properties and energy functions
    • Erwin E., Obermayer K., Schulten K. Self-organizing maps: ordering, convergence properties and energy functions. Biological Cybernetics. 67:(1):1992;47-55.
    • (1992) Biological Cybernetics , vol.67 , Issue.1 , pp. 47-55
    • Erwin, E.1    Obermayer, K.2    Schulten, K.3
  • 20
    • 0008458860 scopus 로고
    • Advances in neural information processing systems
    • G. Tesauro, D.S. Touretzky, & T.K. Leen. Cambridge, MA: MIT Press
    • Fritzke B. Tesauro G., Touretzky D.S., Leen T.K. Advances in neural information processing systems. Advances in neural information processing systems. Vol. 7:1995;MIT Press, Cambridge, MA.
    • (1995) Advances in neural information processing systems , vol.7
    • Fritzke, B.1
  • 22
    • 0031167836 scopus 로고    scopus 로고
    • The continuous interpolating self-organizing map
    • Goppert J., Rosenstiel W. The continuous interpolating self-organizing map. Neural Processing Letters. 5:(3):1997;185-192.
    • (1997) Neural Processing Letters , vol.5 , Issue.3 , pp. 185-192
    • Goppert, J.1    Rosenstiel, W.2
  • 23
    • 0344972928 scopus 로고    scopus 로고
    • Self-organizing maps: Generalizations and new optimization techniques
    • Graepel T., Burger M., Obermayer K. Self-organizing maps: generalizations and new optimization techniques. Neurocomputing. 21:(1-3):1998;173-190.
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 173-190
    • Graepel, T.1    Burger, M.2    Obermayer, K.3
  • 24
    • 40749093037 scopus 로고
    • Measuring the strangeness of strange attractors
    • Grassberger P., Procaccia I. Measuring the strangeness of strange attractors. Physica D. 9:1983;189-208.
    • (1983) Physica D , vol.9 , pp. 189-208
    • Grassberger, P.1    Procaccia, I.2
  • 25
    • 0347020377 scopus 로고    scopus 로고
    • Summaries of the Sixth Annual JPL Airborne Geoscience Workshop
    • Pasadena, CA, March 4-6
    • Green, R. O (1996). Summaries of the Sixth Annual JPL Airborne Geoscience Workshop. AVIRIS Workshop, Pasadena, CA, March 4-6.
    • (1996) AVIRIS Workshop
    • Green, R.O.1
  • 27
    • 0000460712 scopus 로고
    • Visualization of multidimensional image data sets using a neural network
    • Gross M.H., Seibert F. Visualization of multidimensional image data sets using a neural network. Visual Computer. 10:1993;145-159.
    • (1993) Visual Computer , vol.10 , pp. 145-159
    • Gross, M.H.1    Seibert, F.2
  • 28
    • 4243386035 scopus 로고    scopus 로고
    • Estimating relevant input dimensions for self-organizing algorithms
    • N. Allinson, H. Yin, L. Allinson, & J. Slack. London: Springer
    • Hammer B., Villmann T. Estimating relevant input dimensions for self-organizing algorithms. Allinson N., Yin H., Allinson L., Slack J. Advances in self-organising maps. 2001;173-180 Springer, London.
    • (2001) Advances in self-organising maps , pp. 173-180
    • Hammer, B.1    Villmann, T.2
  • 30
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer B., Villmann T. Generalized relevance learning vector quantization. Neural Networks. 15:(8/9):2002;1059-1068.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 31
    • 0002523628 scopus 로고    scopus 로고
    • Active data selection for fuzzy topographic mapping of proximities
    • G. Brewka, R. Der, S. Gottwald, & A. Schierwagen. Leipzig: Leipziger Universitätsverlag
    • Hasenjäger M., Ritter H., Obermayer K. Active data selection for fuzzy topographic mapping of proximities. Brewka G., Der R., Gottwald S., Schierwagen A. Proceedings of the FNS-Workshop. Proceedings of the FNS-Workshop. 1999;93-103 Leipziger Universitätsverlag, Leipzig.
    • (1999) Proceedings of the FNS-Workshop , pp. 93-103
    • Hasenjäger, M.1    Ritter, H.2    Obermayer, K.3
  • 34
    • 0031625017 scopus 로고    scopus 로고
    • Dimensionality reduction by random mapping: Fast similarity computation for clustering
    • International Joint Conference on Neural Networks, Piscataway, NJ: IEEE Service Center.
    • Kaski, S (1998). Dimensionality reduction by random mapping: Fast similarity computation for clustering. Proceedings of IJCNN'98, International Joint Conference on Neural Networks (Vol. 1, pp. 413-418), Piscataway, NJ: IEEE Service Center.
    • (1998) Proceedings of IJCNN'98 , vol.1 , pp. 413-418
    • Kaski, S.1
  • 37
    • 0033570792 scopus 로고    scopus 로고
    • Comparison of SOM point densities based on different criteria
    • Kohonen T. Comparison of SOM point densities based on different criteria. Neural Computation. 11:(8):1999;212-234.
    • (1999) Neural Computation , vol.11 , Issue.8 , pp. 212-234
    • Kohonen, T.1
  • 39
    • 0000353243 scopus 로고
    • How to generate maps by maximizing the mutual information between input and output signals
    • Linsker R. How to generate maps by maximizing the mutual information between input and output signals. Neural Computation. 1:1989;402-411.
    • (1989) Neural Computation , vol.1 , pp. 402-411
    • Linsker, R.1
  • 40
    • 0027632248 scopus 로고
    • 'Neural-gas' network for vector quantization and its application to time-series prediction
    • Martinetz T.M., Berkovich S.G., Schulten K.J. 'Neural-gas' network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks. 4:(4):1993;558-569.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 41
    • 0028204732 scopus 로고
    • Topology representing networks
    • Martinetz T., Schulten K. Topology representing networks. Neural Networks. 7:(3):1994;507-522.
    • (1994) Neural Networks , vol.7 , Issue.3 , pp. 507-522
    • Martinetz, T.1    Schulten, K.2
  • 42
    • 0345759309 scopus 로고    scopus 로고
    • Self-organizing ANNs for planetary surface composition research
    • Brussels, Belgium: D facto publications
    • Merényi, E (1998). Self-organizing ANNs for planetary surface composition research. Proceedings of European Symposium on Artificial Neural Networks (ESANN'98) (pp. 197-202), Brussels, Belgium: D facto publications.
    • (1998) Proceedings of European Symposium on Artificial Neural Networks (ESANN'98) , pp. 197-202
    • Merényi, E.1
  • 43
    • 0002615133 scopus 로고    scopus 로고
    • The challenges in spectral image analysis: An introduction and review of ANN approaches
    • Brussels, Belgium: D facto publications
    • Merényi, E (1999). The challenges in spectral image analysis: An introduction and review of ANN approaches. Proceedings of European Symposium on Artificial Neural Networks (ESANN'99) (pp. 93-98), Brussels, Belgium: D facto publications.
    • (1999) Proceedings of European Symposium on Artificial Neural Networks (ESANN'99) , pp. 93-98
    • Merényi, E.1
  • 44
    • 4243611925 scopus 로고    scopus 로고
    • 'Precision mining' of high-dimensional patterns with self-organizing maps: Interpretation of hyperspectral images
    • P. Sincak, & J. Vascak. Heidelberg, Germany: Physica-Verlag
    • Merenyi E. 'Precision mining' of high-dimensional patterns with self-organizing maps: Interpretation of hyperspectral images. Sincak P., Vascak J. Studies in fuzziness and soft computing. Studies in fuzziness and soft computing. Vol. 54:2000;Physica-Verlag, Heidelberg, Germany.
    • (2000) Studies in fuzziness and soft computing , vol.54
    • Merenyi, E.1
  • 45
    • 0031256561 scopus 로고    scopus 로고
    • Prediction of water in asteroids from spectral data shortward of 3 microns
    • Merényi E., Howell E.S., et al. Prediction of water in asteroids from spectral data shortward of 3 microns. ICARUS. 129:(10):1997;421-439.
    • (1997) ICARUS , vol.129 , Issue.10 , pp. 421-439
    • Merényi, E.1    Howell, E.S.2
  • 47
    • 0030295428 scopus 로고    scopus 로고
    • Mapping of spectral variations on the surface of mars from high spectral resolution telescopic images
    • Merényi E., Singer R.B., Miller J.S. Mapping of spectral variations on the surface of mars from high spectral resolution telescopic images. ICARUS. 124:(10):1996;280-295.
    • (1996) ICARUS , vol.124 , Issue.10 , pp. 280-295
    • Merényi, E.1    Singer, R.B.2    Miller, J.S.3
  • 48
    • 0001406443 scopus 로고
    • Learning 3D-shape-perception with local linear maps
    • Meyering, A., & Ritter, H (1992). Learning 3D-shape-perception with local linear maps. Proceedings of IJCNN'92 (pp. 432-436).
    • (1992) Proceedings of IJCNN'92 , pp. 432-436
    • Meyering, A.1    Ritter, H.2
  • 49
    • 0347020373 scopus 로고
    • Classification of hyperspectral images using wavelet transforms and neural networks
    • San Diego, CA
    • Moon, T., & Merényi, E (1995). Classification of hyperspectral images using wavelet transforms and neural networks. Proceedings of the Annual SPIE Conference (p. 2569), San Diego, CA.
    • (1995) Proceedings of the Annual SPIE Conference , pp. 2569
    • Moon, T.1    Merényi, E.2
  • 50
    • 84886999132 scopus 로고    scopus 로고
    • A simple associative neural network for producing spatially homogeneous spectral abundance interpretations of hyperspectral imagery
    • Brussels, Belgium: D facto publications
    • Pendock, N (1999). A simple associative neural network for producing spatially homogeneous spectral abundance interpretations of hyperspectral imagery. Proceedings of European Symposium on Artificial Neural Networks (ESANN'99) (pp. 99-104), Brussels, Belgium: D facto publications.
    • (1999) Proceedings of European Symposium on Artificial Neural Networks (ESANN'99) , pp. 99-104
    • Pendock, N.1
  • 51
    • 0030152722 scopus 로고    scopus 로고
    • Automated feature selection with a distinction sensitive learning vector quantizer
    • Pregenzer M., Pfurtscheller G., Flotzinger D. Automated feature selection with a distinction sensitive learning vector quantizer. Neurocomputing. 11:(1):1996;19-29.
    • (1996) Neurocomputing , vol.11 , Issue.1 , pp. 19-29
    • Pregenzer, M.1    Pfurtscheller, G.2    Flotzinger, D.3
  • 55
    • 0002961288 scopus 로고
    • On the stationary state of Kohonen's self-organizing sensory mapping
    • Ritter H., Schulten K. On the stationary state of Kohonen's self-organizing sensory mapping. Biological Cybernetics. 54:1986;99-106.
    • (1986) Biological Cybernetics , vol.54 , pp. 99-106
    • Ritter, H.1    Schulten, K.2
  • 56
    • 85156210800 scopus 로고
    • Generalized learning vector quantization
    • G. Tesauro, D. Touretzky, & L. Leen. Cambridge, MA: MIT Press
    • Sato A.S., Yamada K. Generalized learning vector quantization. Tesauro G., Touretzky D., Leen L. Advances in neural information processing systems. Vol. 7:1995;423-429 MIT Press, Cambridge, MA.
    • (1995) Advances in neural information processing systems , vol.7 , pp. 423-429
    • Sato, A.S.1    Yamada, K.2
  • 58
    • 0033365847 scopus 로고    scopus 로고
    • Self-organizing maps and learning vector quantization for feature sequences
    • Somervuo P., Kohonen T. Self-organizing maps and learning vector quantization for feature sequences. Neural Processing Letters. 10:(2):1999;151-159.
    • (1999) Neural Processing Letters , vol.10 , Issue.2 , pp. 151-159
    • Somervuo, P.1    Kohonen, T.2
  • 59
    • 0012626093 scopus 로고
    • Knowledge acquisition with self-organizing neural networks
    • I. Aleksander, & J. Taylor. Amsterdam: North-Holland
    • Ultsch A. Knowledge acquisition with self-organizing neural networks. Aleksander I., Taylor J. Artificial neural networks, 2. Vol. I:1992;735-738 North-Holland, Amsterdam.
    • (1992) Artificial neural networks, 2 , vol.1 , pp. 735-738
    • Ultsch, A.1
  • 60
    • 0348114429 scopus 로고    scopus 로고
    • Controlling strategies for the magnification factor in the neural gas network
    • Villmann T. Controlling strategies for the magnification factor in the neural gas network. Neural Network World. 10:(4):2000;739-750.
    • (2000) Neural Network World , vol.10 , Issue.4 , pp. 739-750
    • Villmann, T.1
  • 61
    • 0036825822 scopus 로고    scopus 로고
    • Neural maps for faithful data modelling in medicine - State of the art and exemplary applications
    • Villmann T. Neural maps for faithful data modelling in medicine - state of the art and exemplary applications. Neurocomputing. 48:(1-4):2002;229-250.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 229-250
    • Villmann, T.1
  • 62
    • 0031097231 scopus 로고    scopus 로고
    • Topology preservation in self-organizing feature maps: Exact definition and measurement
    • Villmann T., Der R., Herrmann M., Martinetz T. Topology preservation in self-organizing feature maps: exact definition and measurement. IEEE Transactions on Neural Networks. 8:(2):1997;256-266.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.2 , pp. 256-266
    • Villmann, T.1    Der, R.2    Herrmann, M.3    Martinetz, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.