-
1
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
Bartlett, P., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural results. Journal of Machine Learning Research 3, 463-482 (2003)
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.1
Mendelson, S.2
-
2
-
-
78049353359
-
Stationarity of matrix relevance learning vector quantization
-
ISSN:1865-3960
-
Biehl, M., Hammer, B., Schleif, F. M., Schneider, P., Villmann, T.: Stationarity of matrix relevance learning vector quantization. Machine Learning Reports 3, 1-17 (2009) ISSN:1865-3960, http://www.uni-leipzig.de/~compint/mlr/ mlr-01-2009.pdf
-
(2009)
Machine Learning Reports
, vol.3
, pp. 1-17
-
-
Biehl, M.1
Hammer, B.2
Schleif, F.M.3
Schneider, P.4
Villmann, T.5
-
4
-
-
0003408496
-
-
Irvine, CA: University of California, Department of Information and Computer Science
-
Blake, C., Merz, C.: UCI repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.1
Merz, C.2
-
5
-
-
85156210264
-
Margin analysis of the LVQ algorithm
-
Crammer, K., Gilad-Bachrach, R.: A. Navot, A. Tishby: Margin analysis of the LVQ algorithm. In: Proc. NIPS 2002, pp. 462-469 (2002)
-
(2002)
Proc. NIPS 2002
, pp. 462-469
-
-
Crammer, K.1
Gilad-Bachrach, R.2
Navot, A.3
Tishby, A.4
-
6
-
-
0036791938
-
Generalized relevance learning vector quantization
-
Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15 (8-9), 1059-1068 (2002)
-
(2002)
Neural. Networks
, vol.15
, Issue.8-9
, pp. 1059-1068
-
-
Hammer, B.1
Villmann, T.2
-
7
-
-
1542535931
-
Mathematical aspects of neural networks
-
Verleysen, M. ed., d-side, Brussels, Belgium
-
Hammer, B., Villmann, T.: Mathematical aspects of neural networks. In: Verleysen, M. (ed.) Proc. of European Symposium on Artificial Neural Networks (ESANN'2003), d-side, Brussels, Belgium, pp. 59-72 (2003)
-
(2003)
Proc. of European Symposium on Artificial Neural. Networks (ESANN'2003)
, pp. 59-72
-
-
Hammer, B.1
Villmann, T.2
-
8
-
-
0003410791
-
-
Springer Series in Information Sciences, Springer, Heidelberg, Second Extended Edition
-
Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1995) (Second Extended Edition 1997)
-
(1995)
Self-Organizing Maps
, vol.30
-
-
Kohonen, T.1
-
9
-
-
10044291614
-
A novel kernel prototype-based learning algorithm
-
Qin, A. K., Suganthan, P. N.: A novel kernel prototype-based learning algorithm. In: Proc. of ICPR'04, pp. 2621-2624 (2004)
-
(2004)
Proc. of ICPR'04
, pp. 2621-2624
-
-
Qin, A.K.1
Suganthan, P.N.2
-
10
-
-
85156210800
-
Generalized learning vector quantization
-
Tesauro, G., Touretzky, D., Leen, T. eds., MIT Press, Cambridge
-
Sato, A. S., Yamada, K.: Generalized learning vector quantization. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 423-429. MIT Press, Cambridge (1995)
-
(1995)
Advances in Neural. Information Processing Systems
, vol.7
, pp. 423-429
-
-
Sato, A.S.1
Yamada, K.2
-
11
-
-
61449263037
-
Cancer informatics by prototype-networks in mass spectrometry
-
Schleif, F. M., Villmann, T., Kostrzewa, M., Hammer, B., Gammerman, A.: Cancer informatics by prototype-networks in mass spectrometry. Artificial Intelligence in Medicine 45, 215-228 (2009)
-
(2009)
Artificial Intelligence in Medicine
, vol.45
, pp. 215-228
-
-
Schleif, F.M.1
Villmann, T.2
Kostrzewa, M.3
Hammer, B.4
Gammerman, A.5
-
13
-
-
0038159964
-
Soft learning vector quantization
-
Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15, 1589-1604 (2003)
-
(2003)
Neural. Computation
, vol.15
, pp. 1589-1604
-
-
Seo, S.1
Obermayer, K.2
-
15
-
-
77950803156
-
Tanimoto metric in treesom for improved representation of mass spectrometry data with an underlying taxonomic structure
-
IEEE Press, Los Alamitos
-
Simmuteit, S., Schleif, F. M., Villmann, T., Elssner, T.: Tanimoto metric in treesom for improved representation of mass spectrometry data with an underlying taxonomic structure. In: Proc. of ICMLA 2009, pp. 563-567. IEEE Press, Los Alamitos (2009)
-
(2009)
Proc. of ICMLA 2009
, pp. 563-567
-
-
Simmuteit, S.1
Schleif, F.M.2
Villmann, T.3
Elssner, T.4
|