메뉴 건너뛰기




Volumn , Issue , 2009, Pages

Funtional vector quantization by neural maps

Author keywords

Classification; Sobolev norms; Vector quantization

Indexed keywords

ADAPTIVE VECTOR QUANTIZATION; CLASSIFICATION; FUNCTIONAL DATAS; MINKOWSKI; REMOTE SENSING DATA; SOBOLEV;

EID: 72049118459     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WHISPERS.2009.5289064     Document Type: Conference Paper
Times cited : (13)

References (16)
  • 1
    • 9444220311 scopus 로고    scopus 로고
    • Relevance lvq versus svm
    • L. Rutkowski, J. Siek-mann, R. Tadeusiewicz, and L. Zadeh, editors, Artificial Intelligence and Soft Computing ICAISC 2004, Springer Verlag, Berlin-Heidelberg
    • B. Hammer, M. Strickert, and T. Villmann. Relevance lvq versus svm. In L. Rutkowski, J. Siek-mann, R. Tadeusiewicz, and L. Zadeh, editors, Artificial Intelligence and Soft Computing (ICAISC 2004), LNAI 3070, pages 592-597. Springer Verlag, Berlin-Heidelberg, 2004.
    • (2004) LNAI , vol.3070 , pp. 592-597
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 2
  • 4
    • 0003209045 scopus 로고
    • Self-Organizing Maps
    • of, Springer, Berlin, Heidelberg, 2nd ext. ed
    • T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information Sciences. Springer, Berlin, Heidelberg, 1995. (2nd ext. ed. 1997).
    • (1995) Springer Series in Information Sciences , vol.30
    • Kohonen, T.1
  • 7
    • 84890262130 scopus 로고    scopus 로고
    • p norm for time series and its application to self-organizing maps
    • M. Cottrell, editor, Paris, Sorbonne
    • p norm for time series and its application to self-organizing maps. In M. Cottrell, editor, Proc. of Workshop on Self-Organizing Maps (WSOM) 2005, pages 733-740, Paris, Sorbonne, 2005.
    • (2005) Proc. of Workshop on Self-Organizing Maps (WSOM) , pp. 733-740
    • Lee, J.1    Verleysen, M.2
  • 8
    • 0027632248 scopus 로고
    • Neural-gas' network for vector quantization and its application to time-series prediction
    • T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. 'Neural-gas' network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks, 4(4):558-569, 1993.
    • (1993) IEEE Trans. on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 10
    • 72049103044 scopus 로고    scopus 로고
    • F. Rossi, B. Conan-Guez, and A. E. Golli. Clustering functional data with the SOM algorithm. In M.Verleysen, editor, Europ. Symp. on Artif Neur. Netw. 2004, pages 305-312. d-side publications, 2004.
    • F. Rossi, B. Conan-Guez, and A. E. Golli. Clustering functional data with the SOM algorithm. In M.Verleysen, editor, Europ. Symp. on Artif Neur. Netw. 2004, pages 305-312. d-side publications, 2004.
  • 11
    • 85156210800 scopus 로고    scopus 로고
    • Generalized learning vector quantization
    • D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, MIT Press, Cambridge, MA, USA
    • A. Sato and K. Yamada. Generalized learning vector quantization. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8. Proc. of the 1995 Conf., pages 423-9. MIT Press, Cambridge, MA, USA, 1996.
    • (1996) Advances in Neural Information Processing Systems 8. Proc. of the 1995 Conf , pp. 423-429
    • Sato, A.1    Yamada, K.2
  • 12
    • 0030537857 scopus 로고    scopus 로고
    • Smoothed functional principal components analysis by the choice of norm
    • B. Silverman. Smoothed functional principal components analysis by the choice of norm. The Annals of Statistics, 24(1):1-24, 1996.
    • (1996) The Annals of Statistics , vol.24 , Issue.1 , pp. 1-24
    • Silverman, B.1
  • 13
    • 69049098650 scopus 로고    scopus 로고
    • Sobolev metrics for learning of functional data - mathematical and theoretical aspects
    • 1MLR-03-2007, 1-15, 2007. ISSN: 1865-3960
    • T. Villmann. Sobolev metrics for learning of functional data - mathematical and theoretical aspects. Machine Learning Reports, 1(MLR-03-2007): 1-15, 2007. ISSN: 1865-3960, http://www.uni-leipzig.de/~compint/ mlr/mlr-01-2007.pdf.
    • Machine Learning Reports
    • Villmann, T.1
  • 14
    • 72049118991 scopus 로고    scopus 로고
    • T. Villmann and B. Hammer. Functional principal component learning using ojaŠs method and sobolev norms. In J. Principe, editor, Proc. of the Workshop on Self-Oranizing Maps (WSOM), page in press. Springer, 2009.
    • T. Villmann and B. Hammer. Functional principal component learning using ojaŠs method and sobolev norms. In J. Principe, editor, Proc. of the Workshop on Self-Oranizing Maps (WSOM), page in press. Springer, 2009.
  • 16
    • 0037379640 scopus 로고    scopus 로고
    • Neural maps in remote sensing image analysis
    • T. Villmann, E. Merényi, and B. Hammer. Neural maps in remote sensing image analysis. Neural Networks, 16(3-4):389-403, 2003.
    • (2003) Neural Networks , vol.16 , Issue.3-4 , pp. 389-403
    • Villmann, T.1    Merényi, E.2    Hammer, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.