메뉴 건너뛰기




Volumn E93-A, Issue 4, 2010, Pages 787-798

Theoretical analysis of density ratio estimation

Author keywords

Asymptotic analysis; Density estimation; Density ratio estimation; Gaussian assumption; Logistic regression

Indexed keywords

ASYMPTOTIC ANALYSIS; PROBABILITY; REGRESSION ANALYSIS;

EID: 77950856653     PISSN: 09168508     EISSN: 17451337     Source Type: Journal    
DOI: 10.1587/transfun.E93.A.787     Document Type: Article
Times cited : (38)

References (35)
  • 1
    • 34547994328 scopus 로고    scopus 로고
    • Discriminative learning for differing training and test distributions
    • DOI 10.1145/1273496.1273507, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
    • S. Bickel, M. Brückner, and T. Scheffer, " Discriminative learning for differing training and test distributions, " Proc. 24th International Conference on Machine Learning, pp. 81-88, 2007. (Pubitemid 47275052)
    • (2007) ACM International Conference Proceeding Series , vol.227 , pp. 81-88
    • Bickel, S.1    Bruckner, M.2    Scheffer, T.3
  • 3
    • 8644266252 scopus 로고    scopus 로고
    • Semiparametric density estimation under a two-sample density ratio model
    • DOI 10.3150/bj/1093265631
    • K. F. Cheng and C. K. Chu, " Semiparametric density estimation under a two-sample density ratio model, " Bernoulli, vol. 10, no. 4, pp. 583-604, 2004. (Pubitemid 44242758)
    • (2004) Bernoulli , vol.10 , Issue.4 , pp. 583-604
    • Cheng, K.F.1    Chu, C.K.2
  • 4
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, " Support-vector networks, " Mach. Learn., vol. 20, pp. 273-297, 1995.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 84886193637 scopus 로고
    • The efficiency of logistic regression compared to normal discriminant analysis
    • B. Efron, " The efficiency of logistic regression compared to normal discriminant analysis, " J. American Statistical Association, vol. 70, no. 352, pp. 892-898, 1975.
    • (1975) J. American Statistical Association , vol.70 , Issue.352 , pp. 892-898
    • Efron, B.1
  • 7
    • 67049098640 scopus 로고    scopus 로고
    • Inlier-based outlier detection via direct Density ratio estimation
    • ed. F. Giannotti, D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, and X. Wu, Pisa, Italy, Dec
    • S. Hido, Y. Tsuboi, H. Kashima, M. Sugiyama, and T. Kanamori, " Inlier-based outlier detection via direct density ratio estimation, " Proc. IEEE International Conference on Data Mining (ICDM2008), ed. F. Giannotti, D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, and X. Wu, pp. 223-232, Pisa, Italy, Dec. 2008.
    • (2008) Proc. IEEE International Conference on Data Mining (ICDM2008) , pp. 223-232
    • Hido, S.1    Tsuboi, Y.2    Kashima, H.3    Sugiyama, M.4    Kanamori, T.5
  • 8
    • 84864031047 scopus 로고    scopus 로고
    • Correcting sample selection bias by unlabeled data
    • Advances in Neural Information Processing Systems 19, ed. B. Schölkopf, MIT Press, Cambridge, MA
    • J. Huang, A. Smola, A. Gretton, K. M. Borgwardt, and B. Schölkopf, " Correcting sample selection bias by unlabeled data, " in Advances in Neural Information Processing Systems 19, ed. B. Schölkopf, J. Platt, and T. Hoffman, pp. 601-608, MIT Press, Cambridge, MA, 2007.
    • (2007) J. Platt, and T. Hoffman , pp. 601-608
    • Huang, J.1    Smola, A.2    Gretton, A.3    Borgwardt, K.M.4    Schölkopf, B.5
  • 9
    • 35648967482 scopus 로고    scopus 로고
    • Pool-based active learning with optimal sampling distribution and its information geometrical interpretation
    • DOI 10.1016/j.neucom.2006.11.024, PII S0925231207000355, Dedicated Hardware Architectures for Intelligent Systems
    • T. Kanamori, " Pool-based active learning with optimal sampling distribution and its information geometrical interpretation, " Neurocomputing, vol. 71, no. 1-3, pp. 353-362, 2007. (Pubitemid 350028654)
    • (2007) Neurocomputing , vol.71 , Issue.1-3 , pp. 353-362
    • Kanamori, T.1
  • 10
    • 68949141755 scopus 로고    scopus 로고
    • A least-squares approach to direct importance estimation
    • July
    • T. Kanamori, S. Hido, and M. Sugiyama, " A least-squares approach to direct importance estimation, " J. Machine Learning Research, vol. 10, pp. 1391-1445, July 2009.
    • (2009) J. Machine Learning Research , vol.10 , pp. 1391-1445
    • Kanamori, T.1    Hido, S.2    Sugiyama, M.3
  • 11
    • 0038647337 scopus 로고    scopus 로고
    • Active learning algorithm using the maximum weighted log-likelihood estimator
    • DOI 10.1016/S0378-3758(02)00234-3, PII S0378375802002343
    • T. Kanamori and H. Shimodaira, " Active learning algorithm using the maximum weighted log-likelihood estimator, " J. Statistical Planning and Inference, vol. 116, no. 1, pp. 149-162, 2003. (Pubitemid 36742567)
    • (2003) Journal of Statistical Planning and Inference , vol.116 , Issue.1 , pp. 149-162
    • Kanamori, T.1    Shimodaira, H.2
  • 15
    • 85161959021 scopus 로고    scopus 로고
    • Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization
    • in, ed. J. C. Platt, D. Koller, Y. Singer, and S. Roweis, MIT Press, Cambridge, MA
    • X. Nguyen, M. Wainwright, and M. Jordan, " Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization, " in Advances in Neural Information Processing Systems 20, ed. J. C. Platt, D. Koller, Y. Singer, and S. Roweis, pp. 1089-1096, MIT Press, Cambridge, MA, 2008.
    • (2008) Advances in Neural Information Processing Systems 20 , pp. 1089-1096
    • Nguyen, X.1    Wainwright, M.2    Jordan, M.3
  • 16
    • 0042600863 scopus 로고    scopus 로고
    • Inferences for case-control and semiparametric two-sample Density ratio models
    • J. Qin, " Inferences for case-control and semiparametric two-sample density ratio models, " Biometrika, vol. 85, no. 3, pp. 619-639, 1998.
    • (1998) Biometrika , vol.85 , Issue.3 , pp. 619-639
    • Qin, J.1
  • 17
    • 67149129014 scopus 로고    scopus 로고
    • J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence, eds., MIT Press, Cambridge, MA
    • J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence, eds., Dataset Shift in Machine Learning, MIT Press, Cambridge, MA, 2009.
    • (2009) Dataset Shift in Machine Learning
  • 18
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • H. Shimodaira, " Improving predictive inference under covariate shift by weighting the log-likelihood function, " J. Statistical Planning and Inference, vol. 90, no. 2, pp. 227-244, 2000.
    • (2000) J. Statistical Planning and Inference , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1
  • 19
    • 84855817673 scopus 로고    scopus 로고
    • Relative novelty detection
    • ed. D. van Dyk and M. Welling, Twelfth International Conference on Artificial Intelligence and Statistics
    • A. Smola, L. Song, and C. H. Teo, " Relative novelty detection, " JMLR Workshop and Conference Proceedings, ed. D. van Dyk and M. Welling, Twelfth International Conference on Artificial Intelligence and Statistics, vol. 5, pp. 536-543, 2009.
    • (2009) JMLR Workshop and Conference Proceedings , vol.5 , pp. 536-543
    • Smola, A.1    Song, L.2    Teo, C.H.3
  • 20
    • 30744458353 scopus 로고    scopus 로고
    • Active learning in approximately linear regression based on conditional expectation of generalization error
    • M. Sugiyama, " Active learning in approximately linear regression based on conditional expectation of generalization error, " J. Machine Learning Research, vol. 7, pp. 141-166, Jan. 2006. (Pubitemid 43100915)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 141-166
    • Sugiyama, M.1
  • 22
    • 34249047899 scopus 로고    scopus 로고
    • Covariate shift adaptation by importance weighted cross validation
    • M. Sugiyama, M. Krauledat, and K. R. Müller, " Covariate shift adaptation by importance weighted cross validation, " J. Machine Learning Research, vol. 8, pp. 985-1005, May 2007. (Pubitemid 46798411)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 985-1005
    • Sugiyama, M.1    Krauledat, M.2    Muller, K.-R.3
  • 23
    • 34249027984 scopus 로고    scopus 로고
    • Input-dependent estimation of generalization error under covariate shift
    • M. Sugiyama and K. R. Müller, " Input-dependent estimation of generalization error under covariate shift, " Statistics & Decisions, vol. 23, no. 4, pp. 249-279, 2005.
    • (2005) Statistics & Decisions , vol.23 , Issue.4 , pp. 249-279
    • Sugiyama, M.1    Müller, K.R.2
  • 24
    • 67349146515 scopus 로고    scopus 로고
    • Pool-based active learning in approximate linear regression
    • M. Sugiyama and S. Nakajima, " Pool-based active learning in approximate linear regression, " Mach. Learn., vol. 75, no. 3, pp. 249-274, 2009.
    • (2009) Mach. Learn. , vol.75 , Issue.3 , pp. 249-274
    • Sugiyama, M.1    Nakajima, S.2
  • 26
    • 70549097452 scopus 로고    scopus 로고
    • Least-squares conditional density estimation
    • Department of Computer Science, Tokyo Institute of Technology, Feb
    • M. Sugiyama, I. Takeuchi, T. Suzuki, T. Kanamori, and H. Hachiya, " Least-squares conditional density estimation, " Tech. Rep. TR09-0004, Department of Computer Science, Tokyo Institute of Technology, Feb. 2009.
    • (2009) Tech. Rep. TR09-0004
    • Sugiyama, M.1    Takeuchi, I.2    Suzuki, T.3    Kanamori, T.4    Hachiya, H.5
  • 28
    • 67149119010 scopus 로고    scopus 로고
    • Estimating squared-loss mutual information for independent component analysis
    • ed. T. Adali, C. Jutten, J. M. T. Romano, and A. K. Barros, Lect. Notes Comput. Sci., Springer, Berlin
    • T. Suzuki and M. Sugiyama, " Estimating squared-loss mutual information for independent component analysis, " Independent Component Analysis and Signal Separation, ed. T. Adali, C. Jutten, J. M. T. Romano, and A. K. Barros, Lect. Notes Comput. Sci., vol. 5441, pp. 130-137, Springer, Berlin, 2009.
    • (2009) Independent Component Analysis and Signal Separation , vol.5441 , pp. 130-137
    • Suzuki, T.1    Sugiyama, M.2
  • 29
    • 77950810889 scopus 로고    scopus 로고
    • Sufficient dimension reduction via squared-loss mutual information estimation
    • Department of Computer Science, Tokyo Institute of Technology, Feb
    • T. Suzuki and M. Sugiyama, " Sufficient dimension reduction via squared-loss mutual information estimation, " Tech. Rep. TR09-0005, Department of Computer Science, Tokyo Institute of Technology, Feb. 2009.
    • (2009) Tech. Rep. TR09-0005
    • Suzuki, T.1    Sugiyama, M.2
  • 30
    • 60849121715 scopus 로고    scopus 로고
    • Mutual information estimation reveals global associations between stimuli and biological processes
    • T. Suzuki, M. Sugiyama, T. Kanamori, and J. Sese, " Mutual information estimation reveals global associations between stimuli and biological processes, " BMC Bioinformatics, vol. 10, no. 1, p. S52, 2009.
    • (2009) BMC Bioinformatics , vol.10 , Issue.1
    • Suzuki, T.1    Sugiyama, M.2    Kanamori, T.3    Sese, J.4
  • 31
    • 67149113981 scopus 로고    scopus 로고
    • Approximating mutual information by maximum likelihood density ratio estimation
    • ed. Y. Saeys, H. Liu, I. Inza, L. Wehenkel, and Y. V. de Peer, New Challenges for Feature Selection in Data Mining and Knowledge Discovery
    • T. Suzuki, M. Sugiyama, J. Sese, and T. Kanamori, " Approximating mutual information by maximum likelihood density ratio estimation, " JMLR Workshop and Conference Proceedings, ed. Y. Saeys, H. Liu, I. Inza, L. Wehenkel, and Y. V. de Peer, New Challenges for Feature Selection in Data Mining and Knowledge Discovery, vol. 4, pp. 5-20, 2008.
    • (2008) JMLR Workshop and Conference Proceedings , vol.4 , pp. 5-20
    • Suzuki, T.1    Sugiyama, M.2    Sese, J.3    Kanamori, T.4
  • 34
    • 0012035667 scopus 로고    scopus 로고
    • Robust weights and designs for biased regression models: Least squares and generalized M-estimation
    • D. P. Wiens, " Robust weights and designs for biased regression models: Least squares and generalized M-estimation, " J. Statistical Planning and Inference, vol. 83, no. 2, pp. 395-412, 2000.
    • (2000) J. Statistical Planning and Inference , vol.83 , Issue.2 , pp. 395-412
    • Wiens, D.P.1
  • 35
    • 14344263218 scopus 로고    scopus 로고
    • Learning and evaluating classifiers under sample selection bias
    • Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
    • B. Zadrozny, " Learning and evaluating classifiers under sample selection bias, " Proc. Twenty-First International Conference on Machine Learning, pp. 903-910, ACM Press, New York, NY, 2004. (Pubitemid 40290896)
    • (2004) Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004 , pp. 903-910
    • Zadrozny, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.