-
1
-
-
34547994328
-
Discriminative learning for differing training and test distributions
-
DOI 10.1145/1273496.1273507, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
-
S. Bickel, M. Brückner, and T. Scheffer, " Discriminative learning for differing training and test distributions, " Proc. 24th International Conference on Machine Learning, pp. 81-88, 2007. (Pubitemid 47275052)
-
(2007)
ACM International Conference Proceeding Series
, vol.227
, pp. 81-88
-
-
Bickel, S.1
Bruckner, M.2
Scheffer, T.3
-
2
-
-
84926078662
-
-
Cambridge University Press, Cambridge, NY
-
N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games, Cambridge University Press, Cambridge, NY, 2006.
-
(2006)
Prediction, Learning, and Games
-
-
Cesa-Bianchi, N.1
Lugosi, G.2
-
3
-
-
8644266252
-
Semiparametric density estimation under a two-sample density ratio model
-
DOI 10.3150/bj/1093265631
-
K. F. Cheng and C. K. Chu, " Semiparametric density estimation under a two-sample density ratio model, " Bernoulli, vol. 10, no. 4, pp. 583-604, 2004. (Pubitemid 44242758)
-
(2004)
Bernoulli
, vol.10
, Issue.4
, pp. 583-604
-
-
Cheng, K.F.1
Chu, C.K.2
-
4
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik, " Support-vector networks, " Mach. Learn., vol. 20, pp. 273-297, 1995.
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
5
-
-
84886193637
-
The efficiency of logistic regression compared to normal discriminant analysis
-
B. Efron, " The efficiency of logistic regression compared to normal discriminant analysis, " J. American Statistical Association, vol. 70, no. 352, pp. 892-898, 1975.
-
(1975)
J. American Statistical Association
, vol.70
, Issue.352
, pp. 892-898
-
-
Efron, B.1
-
7
-
-
67049098640
-
Inlier-based outlier detection via direct Density ratio estimation
-
ed. F. Giannotti, D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, and X. Wu, Pisa, Italy, Dec
-
S. Hido, Y. Tsuboi, H. Kashima, M. Sugiyama, and T. Kanamori, " Inlier-based outlier detection via direct density ratio estimation, " Proc. IEEE International Conference on Data Mining (ICDM2008), ed. F. Giannotti, D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, and X. Wu, pp. 223-232, Pisa, Italy, Dec. 2008.
-
(2008)
Proc. IEEE International Conference on Data Mining (ICDM2008)
, pp. 223-232
-
-
Hido, S.1
Tsuboi, Y.2
Kashima, H.3
Sugiyama, M.4
Kanamori, T.5
-
8
-
-
84864031047
-
Correcting sample selection bias by unlabeled data
-
Advances in Neural Information Processing Systems 19, ed. B. Schölkopf, MIT Press, Cambridge, MA
-
J. Huang, A. Smola, A. Gretton, K. M. Borgwardt, and B. Schölkopf, " Correcting sample selection bias by unlabeled data, " in Advances in Neural Information Processing Systems 19, ed. B. Schölkopf, J. Platt, and T. Hoffman, pp. 601-608, MIT Press, Cambridge, MA, 2007.
-
(2007)
J. Platt, and T. Hoffman
, pp. 601-608
-
-
Huang, J.1
Smola, A.2
Gretton, A.3
Borgwardt, K.M.4
Schölkopf, B.5
-
9
-
-
35648967482
-
Pool-based active learning with optimal sampling distribution and its information geometrical interpretation
-
DOI 10.1016/j.neucom.2006.11.024, PII S0925231207000355, Dedicated Hardware Architectures for Intelligent Systems
-
T. Kanamori, " Pool-based active learning with optimal sampling distribution and its information geometrical interpretation, " Neurocomputing, vol. 71, no. 1-3, pp. 353-362, 2007. (Pubitemid 350028654)
-
(2007)
Neurocomputing
, vol.71
, Issue.1-3
, pp. 353-362
-
-
Kanamori, T.1
-
10
-
-
68949141755
-
A least-squares approach to direct importance estimation
-
July
-
T. Kanamori, S. Hido, and M. Sugiyama, " A least-squares approach to direct importance estimation, " J. Machine Learning Research, vol. 10, pp. 1391-1445, July 2009.
-
(2009)
J. Machine Learning Research
, vol.10
, pp. 1391-1445
-
-
Kanamori, T.1
Hido, S.2
Sugiyama, M.3
-
11
-
-
0038647337
-
Active learning algorithm using the maximum weighted log-likelihood estimator
-
DOI 10.1016/S0378-3758(02)00234-3, PII S0378375802002343
-
T. Kanamori and H. Shimodaira, " Active learning algorithm using the maximum weighted log-likelihood estimator, " J. Statistical Planning and Inference, vol. 116, no. 1, pp. 149-162, 2003. (Pubitemid 36742567)
-
(2003)
Journal of Statistical Planning and Inference
, vol.116
, Issue.1
, pp. 149-162
-
-
Kanamori, T.1
Shimodaira, H.2
-
15
-
-
85161959021
-
Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization
-
in, ed. J. C. Platt, D. Koller, Y. Singer, and S. Roweis, MIT Press, Cambridge, MA
-
X. Nguyen, M. Wainwright, and M. Jordan, " Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization, " in Advances in Neural Information Processing Systems 20, ed. J. C. Platt, D. Koller, Y. Singer, and S. Roweis, pp. 1089-1096, MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems 20
, pp. 1089-1096
-
-
Nguyen, X.1
Wainwright, M.2
Jordan, M.3
-
16
-
-
0042600863
-
Inferences for case-control and semiparametric two-sample Density ratio models
-
J. Qin, " Inferences for case-control and semiparametric two-sample density ratio models, " Biometrika, vol. 85, no. 3, pp. 619-639, 1998.
-
(1998)
Biometrika
, vol.85
, Issue.3
, pp. 619-639
-
-
Qin, J.1
-
17
-
-
67149129014
-
-
J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence, eds., MIT Press, Cambridge, MA
-
J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence, eds., Dataset Shift in Machine Learning, MIT Press, Cambridge, MA, 2009.
-
(2009)
Dataset Shift in Machine Learning
-
-
-
18
-
-
0037527188
-
Improving predictive inference under covariate shift by weighting the log-likelihood function
-
H. Shimodaira, " Improving predictive inference under covariate shift by weighting the log-likelihood function, " J. Statistical Planning and Inference, vol. 90, no. 2, pp. 227-244, 2000.
-
(2000)
J. Statistical Planning and Inference
, vol.90
, Issue.2
, pp. 227-244
-
-
Shimodaira, H.1
-
19
-
-
84855817673
-
Relative novelty detection
-
ed. D. van Dyk and M. Welling, Twelfth International Conference on Artificial Intelligence and Statistics
-
A. Smola, L. Song, and C. H. Teo, " Relative novelty detection, " JMLR Workshop and Conference Proceedings, ed. D. van Dyk and M. Welling, Twelfth International Conference on Artificial Intelligence and Statistics, vol. 5, pp. 536-543, 2009.
-
(2009)
JMLR Workshop and Conference Proceedings
, vol.5
, pp. 536-543
-
-
Smola, A.1
Song, L.2
Teo, C.H.3
-
20
-
-
30744458353
-
Active learning in approximately linear regression based on conditional expectation of generalization error
-
M. Sugiyama, " Active learning in approximately linear regression based on conditional expectation of generalization error, " J. Machine Learning Research, vol. 7, pp. 141-166, Jan. 2006. (Pubitemid 43100915)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 141-166
-
-
Sugiyama, M.1
-
21
-
-
70549106792
-
A density-ratio framework for statistical data processing
-
M. Sugiyama, T. Kanamori, T. Suzuki, S. Hido, J. Sese, I. Takeuchi, and L. Wang, " A density-ratio framework for statistical data processing, " IPSJ Trans. Computer Vision and Applications, vol. 1, pp. 183-208, 2009.
-
(2009)
IPSJ Trans. Computer Vision and Applications
, vol.1
, pp. 183-208
-
-
Sugiyama, M.1
Kanamori, T.2
Suzuki, T.3
Hido, S.4
Sese, J.5
Takeuchi, I.6
Wang, L.7
-
22
-
-
34249047899
-
Covariate shift adaptation by importance weighted cross validation
-
M. Sugiyama, M. Krauledat, and K. R. Müller, " Covariate shift adaptation by importance weighted cross validation, " J. Machine Learning Research, vol. 8, pp. 985-1005, May 2007. (Pubitemid 46798411)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 985-1005
-
-
Sugiyama, M.1
Krauledat, M.2
Muller, K.-R.3
-
23
-
-
34249027984
-
Input-dependent estimation of generalization error under covariate shift
-
M. Sugiyama and K. R. Müller, " Input-dependent estimation of generalization error under covariate shift, " Statistics & Decisions, vol. 23, no. 4, pp. 249-279, 2005.
-
(2005)
Statistics & Decisions
, vol.23
, Issue.4
, pp. 249-279
-
-
Sugiyama, M.1
Müller, K.R.2
-
24
-
-
67349146515
-
Pool-based active learning in approximate linear regression
-
M. Sugiyama and S. Nakajima, " Pool-based active learning in approximate linear regression, " Mach. Learn., vol. 75, no. 3, pp. 249-274, 2009.
-
(2009)
Mach. Learn.
, vol.75
, Issue.3
, pp. 249-274
-
-
Sugiyama, M.1
Nakajima, S.2
-
25
-
-
55549114317
-
Direct importance estimation for covariate shift adaptation
-
M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanabe, " Direct importance estimation for covariate shift adaptation, " Annals of the Institute of Statistical Mathematics, vol. 60, no. 4, pp. 699-746, 2008.
-
(2008)
Annals of the Institute of Statistical Mathematics
, vol.60
, Issue.4
, pp. 699-746
-
-
Sugiyama, M.1
Suzuki, T.2
Nakajima, S.3
Kashima, H.4
Von Bünau, P.5
Kawanabe, M.6
-
26
-
-
70549097452
-
Least-squares conditional density estimation
-
Department of Computer Science, Tokyo Institute of Technology, Feb
-
M. Sugiyama, I. Takeuchi, T. Suzuki, T. Kanamori, and H. Hachiya, " Least-squares conditional density estimation, " Tech. Rep. TR09-0004, Department of Computer Science, Tokyo Institute of Technology, Feb. 2009.
-
(2009)
Tech. Rep. TR09-0004
-
-
Sugiyama, M.1
Takeuchi, I.2
Suzuki, T.3
Kanamori, T.4
Hachiya, H.5
-
27
-
-
77950845403
-
-
MIT Press, Cambridge, MA, to appear
-
M. Sugiyama, P. von Bünau, M. Kawanabe, and K. R. Müller, Covariate Shift Adaptation: Towards Machine Learning in Non-Stationary Environment, MIT Press, Cambridge, MA, 2010. to appear.
-
(2010)
Covariate Shift Adaptation: Towards Machine Learning in Non-Stationary Environment
-
-
Sugiyama, M.1
Von Bünau, P.2
Kawanabe, M.3
Müller, K.R.4
-
28
-
-
67149119010
-
Estimating squared-loss mutual information for independent component analysis
-
ed. T. Adali, C. Jutten, J. M. T. Romano, and A. K. Barros, Lect. Notes Comput. Sci., Springer, Berlin
-
T. Suzuki and M. Sugiyama, " Estimating squared-loss mutual information for independent component analysis, " Independent Component Analysis and Signal Separation, ed. T. Adali, C. Jutten, J. M. T. Romano, and A. K. Barros, Lect. Notes Comput. Sci., vol. 5441, pp. 130-137, Springer, Berlin, 2009.
-
(2009)
Independent Component Analysis and Signal Separation
, vol.5441
, pp. 130-137
-
-
Suzuki, T.1
Sugiyama, M.2
-
29
-
-
77950810889
-
Sufficient dimension reduction via squared-loss mutual information estimation
-
Department of Computer Science, Tokyo Institute of Technology, Feb
-
T. Suzuki and M. Sugiyama, " Sufficient dimension reduction via squared-loss mutual information estimation, " Tech. Rep. TR09-0005, Department of Computer Science, Tokyo Institute of Technology, Feb. 2009.
-
(2009)
Tech. Rep. TR09-0005
-
-
Suzuki, T.1
Sugiyama, M.2
-
30
-
-
60849121715
-
Mutual information estimation reveals global associations between stimuli and biological processes
-
T. Suzuki, M. Sugiyama, T. Kanamori, and J. Sese, " Mutual information estimation reveals global associations between stimuli and biological processes, " BMC Bioinformatics, vol. 10, no. 1, p. S52, 2009.
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.1
-
-
Suzuki, T.1
Sugiyama, M.2
Kanamori, T.3
Sese, J.4
-
31
-
-
67149113981
-
Approximating mutual information by maximum likelihood density ratio estimation
-
ed. Y. Saeys, H. Liu, I. Inza, L. Wehenkel, and Y. V. de Peer, New Challenges for Feature Selection in Data Mining and Knowledge Discovery
-
T. Suzuki, M. Sugiyama, J. Sese, and T. Kanamori, " Approximating mutual information by maximum likelihood density ratio estimation, " JMLR Workshop and Conference Proceedings, ed. Y. Saeys, H. Liu, I. Inza, L. Wehenkel, and Y. V. de Peer, New Challenges for Feature Selection in Data Mining and Knowledge Discovery, vol. 4, pp. 5-20, 2008.
-
(2008)
JMLR Workshop and Conference Proceedings
, vol.4
, pp. 5-20
-
-
Suzuki, T.1
Sugiyama, M.2
Sese, J.3
Kanamori, T.4
-
34
-
-
0012035667
-
Robust weights and designs for biased regression models: Least squares and generalized M-estimation
-
D. P. Wiens, " Robust weights and designs for biased regression models: Least squares and generalized M-estimation, " J. Statistical Planning and Inference, vol. 83, no. 2, pp. 395-412, 2000.
-
(2000)
J. Statistical Planning and Inference
, vol.83
, Issue.2
, pp. 395-412
-
-
Wiens, D.P.1
-
35
-
-
14344263218
-
Learning and evaluating classifiers under sample selection bias
-
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
-
B. Zadrozny, " Learning and evaluating classifiers under sample selection bias, " Proc. Twenty-First International Conference on Machine Learning, pp. 903-910, ACM Press, New York, NY, 2004. (Pubitemid 40290896)
-
(2004)
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
, pp. 903-910
-
-
Zadrozny, B.1
|