-
1
-
-
0016439532
-
Markovian representation of stochastic processes by canonical variables
-
H. Akaike. Markovian representation of stochastic processes by canonical variables. SIAM J. Control, 13(1):162-173, 1975.
-
(1975)
SIAM J. Control
, vol.13
, Issue.1
, pp. 162-173
-
-
Akaike, H.1
-
3
-
-
0022145353
-
A realization approach to stochastic model reduction
-
U. B. Desai, D. Pal, and R. D. Kirkpatrick. A realization approach to stochastic model reduction. Int. J. Control, 42(4):821-838, 1985.
-
(1985)
Int. J. Control
, vol.42
, Issue.4
, pp. 821-838
-
-
Desai, U.B.1
Pal, D.2
Kirkpatrick, R.D.3
-
6
-
-
85040751730
-
Subspace Methods for System Identification: A Realization Approach
-
Springer Verlag
-
T. Katayama. Subspace Methods for System Identification: A Realization Approach. Communications and Control Engineering. Springer Verlag, 2005.
-
(2005)
Communications and Control Engineering
-
-
Katayama, T.1
-
7
-
-
0032598748
-
Realization of stochastic systems with exogenous inputs and subspace identification
-
T. Katayama and G. Picci. Realization of stochastic systems with exogenous inputs and subspace identification. Automatica, 35(10):1635-1652, 1999.
-
(1999)
Automatica
, vol.35
, Issue.10
, pp. 1635-1652
-
-
Katayama, T.1
Picci, G.2
-
8
-
-
49749105766
-
-
E. Keogh, J. Lin, and A. Fu. Hot sax: Finding the most unusual time series subsequence: Algorithms and applications. In Proc. of the 5th IEEE Int. Conf. on Data Mining, pages 440-449, 2004.
-
E. Keogh, J. Lin, and A. Fu. Hot sax: Finding the most unusual time series subsequence: Algorithms and applications. In Proc. of the 5th IEEE Int. Conf. on Data Mining, pages 440-449, 2004.
-
-
-
-
9
-
-
0029276061
-
The propagator method for source bearing estimation
-
S. Marcos, A. Marsal, and M. Benidir. The propagator method for source bearing estimation. Signal Processing, 42:121-138, 1995.
-
(1995)
Signal Processing
, vol.42
, pp. 121-138
-
-
Marcos, S.1
Marsal, A.2
Benidir, M.3
-
10
-
-
0142063407
-
Novelty detection: A review - part 1: Statistical approaches
-
M. Markou and S. Singh. Novelty detection: A review - part 1: Statistical approaches. Signal Processing, 83(12):2481-2497, 2003.
-
(2003)
Signal Processing
, vol.83
, Issue.12
, pp. 2481-2497
-
-
Markou, M.1
Singh, S.2
-
11
-
-
0142126712
-
Novelty detection: A review - part 2: Neural network based approaches
-
M. Markou and S. Singh. Novelty detection: A review - part 2: Neural network based approaches. Signal Processing, 83(12):2499-2521, 2003.
-
(2003)
Signal Processing
, vol.83
, Issue.12
, pp. 2499-2521
-
-
Markou, M.1
Singh, S.2
-
12
-
-
33747721457
-
A metric for arma processes
-
R. J. Martin. A metric for arma processes. IEEE Trans. on Signal Processing, 48(4):1164-1170, 2000.
-
(2000)
IEEE Trans. on Signal Processing
, vol.48
, Issue.4
, pp. 1164-1170
-
-
Martin, R.J.1
-
13
-
-
9244227929
-
Recursive sub-space identification based on instrumental variable unconstrained quadratic optimization
-
G. Mercére, S. Lecoeuche, and M. Lovera. Recursive sub-space identification based on instrumental variable unconstrained quadratic optimization. Int. J. Adaptive Control and Signal Processing, 18:771-797, 2004.
-
(2004)
Int. J. Adaptive Control and Signal Processing
, vol.18
, pp. 771-797
-
-
Mercére, G.1
Lecoeuche, S.2
Lovera, M.3
-
16
-
-
33644653840
-
A unifying framework for detecting outliers and change points from time series
-
J. Takeuchi and K. Yamanishi. A unifying framework for detecting outliers and change points from time series. IEEE Trans. on Knowledge and Data Engineering, 18(4):482-489, 2006.
-
(2006)
IEEE Trans. on Knowledge and Data Engineering
, vol.18
, Issue.4
, pp. 482-489
-
-
Takeuchi, J.1
Yamanishi, K.2
-
17
-
-
0242540409
-
-
K. Yamanishi and J. Takeuchi. A unifying framework for detecting outliers and change points from non-stationary time series data. In Proc. of the 8the ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 676-681, 2002.
-
K. Yamanishi and J. Takeuchi. A unifying framework for detecting outliers and change points from non-stationary time series data. In Proc. of the 8the ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 676-681, 2002.
-
-
-
|