메뉴 건너뛰기




Volumn , Issue , 2007, Pages 559-564

Change-point detection in time-series data based on subspace identification

Author keywords

[No Author keywords available]

Indexed keywords

ADMINISTRATIVE DATA PROCESSING; DATA MINING; DECISION SUPPORT SYSTEMS; INFORMATION MANAGEMENT; MINING; SEARCH ENGINES; STATE SPACE METHODS;

EID: 49749093757     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2007.78     Document Type: Conference Paper
Times cited : (112)

References (17)
  • 1
    • 0016439532 scopus 로고
    • Markovian representation of stochastic processes by canonical variables
    • H. Akaike. Markovian representation of stochastic processes by canonical variables. SIAM J. Control, 13(1):162-173, 1975.
    • (1975) SIAM J. Control , vol.13 , Issue.1 , pp. 162-173
    • Akaike, H.1
  • 3
    • 0022145353 scopus 로고
    • A realization approach to stochastic model reduction
    • U. B. Desai, D. Pal, and R. D. Kirkpatrick. A realization approach to stochastic model reduction. Int. J. Control, 42(4):821-838, 1985.
    • (1985) Int. J. Control , vol.42 , Issue.4 , pp. 821-838
    • Desai, U.B.1    Pal, D.2    Kirkpatrick, R.D.3
  • 6
    • 85040751730 scopus 로고    scopus 로고
    • Subspace Methods for System Identification: A Realization Approach
    • Springer Verlag
    • T. Katayama. Subspace Methods for System Identification: A Realization Approach. Communications and Control Engineering. Springer Verlag, 2005.
    • (2005) Communications and Control Engineering
    • Katayama, T.1
  • 7
    • 0032598748 scopus 로고    scopus 로고
    • Realization of stochastic systems with exogenous inputs and subspace identification
    • T. Katayama and G. Picci. Realization of stochastic systems with exogenous inputs and subspace identification. Automatica, 35(10):1635-1652, 1999.
    • (1999) Automatica , vol.35 , Issue.10 , pp. 1635-1652
    • Katayama, T.1    Picci, G.2
  • 8
    • 49749105766 scopus 로고    scopus 로고
    • E. Keogh, J. Lin, and A. Fu. Hot sax: Finding the most unusual time series subsequence: Algorithms and applications. In Proc. of the 5th IEEE Int. Conf. on Data Mining, pages 440-449, 2004.
    • E. Keogh, J. Lin, and A. Fu. Hot sax: Finding the most unusual time series subsequence: Algorithms and applications. In Proc. of the 5th IEEE Int. Conf. on Data Mining, pages 440-449, 2004.
  • 9
    • 0029276061 scopus 로고
    • The propagator method for source bearing estimation
    • S. Marcos, A. Marsal, and M. Benidir. The propagator method for source bearing estimation. Signal Processing, 42:121-138, 1995.
    • (1995) Signal Processing , vol.42 , pp. 121-138
    • Marcos, S.1    Marsal, A.2    Benidir, M.3
  • 10
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review - part 1: Statistical approaches
    • M. Markou and S. Singh. Novelty detection: A review - part 1: Statistical approaches. Signal Processing, 83(12):2481-2497, 2003.
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 11
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review - part 2: Neural network based approaches
    • M. Markou and S. Singh. Novelty detection: A review - part 2: Neural network based approaches. Signal Processing, 83(12):2499-2521, 2003.
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 12
    • 33747721457 scopus 로고    scopus 로고
    • A metric for arma processes
    • R. J. Martin. A metric for arma processes. IEEE Trans. on Signal Processing, 48(4):1164-1170, 2000.
    • (2000) IEEE Trans. on Signal Processing , vol.48 , Issue.4 , pp. 1164-1170
    • Martin, R.J.1
  • 13
    • 9244227929 scopus 로고    scopus 로고
    • Recursive sub-space identification based on instrumental variable unconstrained quadratic optimization
    • G. Mercére, S. Lecoeuche, and M. Lovera. Recursive sub-space identification based on instrumental variable unconstrained quadratic optimization. Int. J. Adaptive Control and Signal Processing, 18:771-797, 2004.
    • (2004) Int. J. Adaptive Control and Signal Processing , vol.18 , pp. 771-797
    • Mercére, G.1    Lecoeuche, S.2    Lovera, M.3
  • 16
    • 33644653840 scopus 로고    scopus 로고
    • A unifying framework for detecting outliers and change points from time series
    • J. Takeuchi and K. Yamanishi. A unifying framework for detecting outliers and change points from time series. IEEE Trans. on Knowledge and Data Engineering, 18(4):482-489, 2006.
    • (2006) IEEE Trans. on Knowledge and Data Engineering , vol.18 , Issue.4 , pp. 482-489
    • Takeuchi, J.1    Yamanishi, K.2
  • 17
    • 0242540409 scopus 로고    scopus 로고
    • K. Yamanishi and J. Takeuchi. A unifying framework for detecting outliers and change points from non-stationary time series data. In Proc. of the 8the ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 676-681, 2002.
    • K. Yamanishi and J. Takeuchi. A unifying framework for detecting outliers and change points from non-stationary time series data. In Proc. of the 8the ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 676-681, 2002.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.