메뉴 건너뛰기




Volumn 21, Issue 3, 2012, Pages 505-513

Smooth twin support vector regression

Author keywords

Machine learning; Nonparallel planes; Smoothing techniques; Support vector regression

Indexed keywords

BENCHMARK DATASETS; CONSTRAINED QUADRATIC PROGRAMMING; CONVEX PROBLEMS; GLOBAL OPTIMAL SOLUTIONS; NEWTON-ARMIJO ALGORITHMS; NONPARALLEL PLANES; OBJECTIVE FUNCTIONS; OPTIMIZATION PROBLEMS; SMOOTHING TECHNIQUES; SUBOPTIMAL SOLUTION; SUPPORT VECTOR REGRESSION; SUPPORT VECTOR REGRESSION (SVR); UNCONSTRAINED MINIMIZATION PROBLEM;

EID: 84858159769     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-010-0454-9     Document Type: Article
Times cited : (58)

References (31)
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2): 121-167.
    • (1998) Data Min Knowl Discov , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 5
    • 0004055894 scopus 로고    scopus 로고
    • Convex optimization
    • Cambridge University Press, Cambridge. Available at
    • Boyd S and Vandenberghe L (2003) Convex optimization. Cambridge University Press, Cambridge. Available at http://www. stanford. edu/~boyd/cvxbook. html.
    • (2003)
    • Boyd, S.1    Vandenberghe, L.2
  • 7
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Cambridge
    • Platt JC (1998) Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel methods-support vector machines. Cambridge.
    • (1998) Advances in Kernel methods-support vector machines
    • Platt, J.C.1
  • 9
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: support vector machines for large-scale regression problems
    • Collobert R, Bengio S (2001) SVMTorch: support vector machines for large-scale regression problems. J Mach Learn 1(2): 143-160.
    • (2001) J Mach Learn , vol.1 , Issue.2 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 10
    • 0003710380 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • Available from
    • Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. Available from http://www. csie. ntu. edu. tw/~cjlin.
    • (2001)
    • Chang, C.C.1    Lin, C.J.2
  • 11
    • 33644830072 scopus 로고    scopus 로고
    • Multisurface proximal support vector classification via generalized eigenvalues
    • Mangasarian OL, Wild EW (2006) Multisurface proximal support vector classification via generalized eigenvalues. IEEE Trans Pattern Anal Mach Intell 28(1): 69-74.
    • (2006) IEEE Trans Pattern Anal Mach Intell , vol.28 , Issue.1 , pp. 69-74
    • Mangasarian, O.L.1    Wild, E.W.2
  • 12
    • 34047225880 scopus 로고    scopus 로고
    • Twin support vector machines for pattern classification
    • Jayadeva RK, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5): 905-910.
    • (2007) IEEE Trans Pattern Anal Mach Intell , vol.29 , Issue.5 , pp. 905-910
    • Jayadeva, R.K.1    Chandra, S.2
  • 13
    • 48649097170 scopus 로고    scopus 로고
    • Application of smoothing technique on twin support vector machines
    • Kumar MA, Gopal M (2008) Application of smoothing technique on twin support vector machines. Pattern Recognit Lett 29: 1842-1848.
    • (2008) Pattern Recognit Lett , vol.29 , pp. 1842-1848
    • Kumar, M.A.1    Gopal, M.2
  • 14
    • 60249095678 scopus 로고    scopus 로고
    • Least squares twin support vector machines for pattern classification
    • Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36: 7535-7543.
    • (2009) Expert Syst Appl , vol.36 , pp. 7535-7543
    • Kumar, M.A.1    Gopal, M.2
  • 15
    • 76849100708 scopus 로고    scopus 로고
    • TSVR: an efficient twin support vector machine for regression
    • Peng X (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23(3): 365-372.
    • (2010) Neural Netw , vol.23 , Issue.3 , pp. 365-372
    • Peng, X.1
  • 16
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • Chapelle O (2007) Training a support vector machine in the primal. Neural Comput 19(5): 1155-1178.
    • (2007) Neural Comput , vol.19 , Issue.5 , pp. 1155-1178
    • Chapelle, O.1
  • 17
    • 34247216124 scopus 로고    scopus 로고
    • Recursive finite Newton algorithm for support vector regression in the primal
    • Bo L, Wang L, Jiao L (2007) Recursive finite Newton algorithm for support vector regression in the primal. Neural Comput 19(4): 1082-1096.
    • (2007) Neural Comput , vol.19 , Issue.4 , pp. 1082-1096
    • Bo, L.1    Wang, L.2    Jiao, L.3
  • 21
    • 0035479871 scopus 로고    scopus 로고
    • SSVM: a smooth support vector machine
    • Lee Y-J, Mangasarian OL (2000) SSVM: a smooth support vector machine. Comput Optim Appl 20(1): 5-22.
    • (2000) Comput Optim Appl , vol.20 , Issue.1 , pp. 5-22
    • Lee, Y.-J.1    Mangasarian, O.L.2
  • 23
    • 38049188022 scopus 로고    scopus 로고
    • Selecting a reduced set for building sparse support vector regression in the primal
    • Bo L, Wang L, Jiaov L (2007) Selecting a reduced set for building sparse support vector regression in the primal. Lecture notes in computer science vol 4426, pp 35-47.
    • (2007) Lecture notes in computer science , vol.4426 , pp. 35-47
    • Bo, L.1    Wang, L.2    Jiaov, L.3
  • 24
    • 84858156604 scopus 로고    scopus 로고
    • Version 5.0, Denmark
    • The MOSEK Optimization Tools, [Online]. Available:
    • The MOSEK Optimization Tools (2008) Version 5. 0, Denmark. [Online]. Available: http://www. mosek. com.
    • , vol.2008
  • 26
    • 85162076368 scopus 로고    scopus 로고
    • Support vector machine classification with indefinite Kernels
    • MIT Press, Cambridge
    • Luss R and D'Aspremont A (2008) Support vector machine classification with indefinite Kernels. In: Advances in Neural Information Process Systems 20. MIT Press, Cambridge, pp 953-960.
    • (2008) Advances in Neural Information Process Systems 20 , pp. 953-960
    • Luss, R.1    D'Aspremont, A.2
  • 27
    • 70649100043 scopus 로고    scopus 로고
    • New support vector algorithms with parametric insensitive/margin model
    • Hao P-Y (2010) New support vector algorithms with parametric insensitive/margin model. Neural Netw 23: 60-73.
    • (2010) Neural Netw , vol.23 , pp. 60-73
    • Hao, P.-Y.1
  • 30
    • 35348881683 scopus 로고    scopus 로고
    • Semisupervised regression with cotraining-style algorithms
    • Zhou Z-H, Li M (2007) Semisupervised regression with cotraining-style algorithms. IEEE Trans Knowl Data Eng 19(11): 1479-1493.
    • (2007) IEEE Trans Knowl Data Eng , vol.19 , Issue.11 , pp. 1479-1493
    • Zhou, Z.-H.1    Li, M.2
  • 31
    • 0003408496 scopus 로고
    • UCI repository of machine learning databases
    • University of California, Irvine. Available at
    • Muphy PM, Aha DW (1992) UCI repository of machine learning databases. University of California, Irvine. Available at http://www. ics. uci. edu/~mlearn.
    • (1992)
    • Muphy, P.M.1    Aha, D.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.