메뉴 건너뛰기




Volumn 24, Issue 5, 2010, Pages 667-690

Structure-embedded AUC-SVM

Author keywords

Area Under the ROC Curve (AUC); sampling; structure information; Support Vector Machine (SVM); Support vector sample pair

Indexed keywords

AREA UNDER THE ROC CURVE; COMPARATIVE EXPERIMENTS; DECISION FUNCTIONS; GENERALIZATION PERFORMANCE; GLOBAL DISTRIBUTION; GLOBAL STRUCTURE; INFORMATION LOSS; LEARNING PARADIGMS; NOVEL STRUCTURES; NUMBER OF SAMPLES; REAL DATA SETS; STRUCTURE INFORMATION; SUPPORT VECTOR; SUPPORT VECTOR MACHINE (SVM); SUPPORT VECTOR SAMPLE PAIR; TRAINING SAMPLE; UNIFORM FORMULATIONS;

EID: 77956027652     PISSN: 02180014     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218001410008172     Document Type: Article
Times cited : (5)

References (27)
  • 4
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining Knowl. Discov. 2 (1998) 121-167.
    • (1998) Data Mining Knowl. Discov. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 7
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett, An introduction to ROC analysis, Patt. Recogn. Lett. 27 (2006) 861-874.
    • (2006) Patt. Recogn. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 8
    • 14344264748 scopus 로고    scopus 로고
    • Optimizing area under the ROC curve using gradient descent
    • Ban® , Alberta, Canada
    • A. Herschtal and B. Raskutti, Optimizing area under the ROC curve using gradient descent, Proc. 21st Int. Conf. Machine Learning ICML'04 (Ban® , Alberta, Canada, 2004), pp. 49-56.
    • (2004) Proc. 21st Int. Conf. Machine Learning ICML'04 , pp. 49-56
    • Herschtal, A.1    Raskutti, B.2
  • 10
    • 33750684755 scopus 로고    scopus 로고
    • Local learning vs. global learning: An introduction to maxi-min margin machine
    • eds. L. Wang Springer, Berlin
    • K. Huang, H. Yang, I. King and M. R. Lyu, Local learning vs. global learning: An introduction to maxi-min margin machine, in Support Vector Machines: Theory and Applications, eds. L. Wang (Springer, Berlin, 2005), pp. 113-131.
    • (2005) Support Vector Machines: Theory and Applications , pp. 113-131
    • Huang, K.1    Yang, H.2    King, I.3    Lyu, M.R.4
  • 11
    • 40549124666 scopus 로고    scopus 로고
    • Maxi-min margin machine: Learning large margin classifiers locally and globally
    • K. Huang, H. Yang, I. King and M. R. Lyu, Maxi-min margin machine: Learning large margin classifiers locally and globally, IEEE Trans. Neural Networks 19 (2008) 260-272.
    • (2008) IEEE Trans. Neural Networks , vol.19 , pp. 260-272
    • Huang, K.1    Yang, H.2    King, I.3    Lyu, M.R.4
  • 12
    • 69649090538 scopus 로고    scopus 로고
    • A minimax theorem with application to machine learning, signal processing, and finance
    • S. J. Kim and S. Boyd, A minimax theorem with application to machine learning, signal processing, and finance, SIAM J. Optimiz. 19 (2008) 1344-1367.
    • (2008) SIAM J. Optimiz. , vol.19 , pp. 1344-1367
    • Kim, S.J.1    Boyd, S.2
  • 13
    • 7044227562 scopus 로고    scopus 로고
    • AUC: A better measure than accuracy in comparing learning algorithms
    • Halifax, Nova Scotia, Canada
    • C. X. Ling, J. Huang and H. Zhang, AUC: A better measure than accuracy in comparing learning algorithms, Proc. 16th Canadian Conf. Artificial Intelligence AI'03 (Halifax, Nova Scotia, Canada, 2003), pp. 329-341.
    • (2003) Proc. 16th Canadian Conf. Artificial Intelligence AI'03 , pp. 329-341
    • Ling, C.X.1    Huang, J.2    Zhang, H.3
  • 14
    • 84880794162 scopus 로고    scopus 로고
    • AUC: A statistically consistent and more discriminating measure than accuracy
    • Acapulco, Mexico
    • C. X. Ling, J. Huang and H. Zhang, AUC: A statistically consistent and more discriminating measure than accuracy, Proc. Int. Joint Conf. Artificial Intelligence IJCAI'03 (Acapulco, Mexico, 2003), pp. 519-526.
    • (2003) Proc. Int. Joint Conf. Artificial Intelligence IJCAI'03 , pp. 519-526
    • Ling, C.X.1    Huang, J.2    Zhang, H.3
  • 19
    • 25444471537 scopus 로고    scopus 로고
    • Support vector machine networks for multi-class classification
    • F. Y. Shih and K. Zhang, Support vector machine networks for multi-class classification, Int. J. Patt. Recogn. Artif. Intell. 19 (2005) 775-786.
    • (2005) Int. J. Patt. Recogn. Artif. Intell. , vol.19 , pp. 775-786
    • Shih, F.Y.1    Zhang, K.2
  • 20
    • 33847676236 scopus 로고    scopus 로고
    • Neighborhood property based pattern selection for support vector machines
    • H. Shin, Neighborhood property based pattern selection for support vector machines, Neural Comput. 19 (2007) 816-855.
    • (2007) Neural Comput , vol.19 , pp. 816-855
    • Shin, H.1
  • 21
    • 44349145068 scopus 로고    scopus 로고
    • Comparison of ROC and likelihood decision methods in automatic fingerprint verification
    • S. N. Srihari and H. Srinivasan, Comparison of ROC and likelihood decision methods in automatic fingerprint verification, Int. J. Patt. Recogn. Artif. Intell. 22 (2008) 535-553.
    • (2008) Int. J. Patt. Recogn. Artif. Intell. , vol.22 , pp. 535-553
    • Srihari, S.N.1    Srinivasan, H.2
  • 24
    • 0003742929 scopus 로고
    • Inverting modified matrices
    • Statistical Research Group, Princeton University, Princeton, NJ
    • M. A. Woodbury, Inverting modified matrices, Technical Report 42, Statistical Research Group, Princeton University, Princeton, NJ, 1950.
    • (1950) Technical Report 42
    • Woodbury, M.A.1
  • 26
    • 51649109792 scopus 로고    scopus 로고
    • Discriminatively regularized least-squares classification
    • H. Xue, S. C. Chen and Q. Yang, Discriminatively regularized least-squares classification, Patt. Recogn. 41 (2009) 93-104.
    • (2009) Patt. Recogn. , vol.41 , pp. 93-104
    • Xue, H.1    Chen, S.C.2    Yang, Q.3
  • 27
    • 1942451946 scopus 로고    scopus 로고
    • Optimizing classifier performance via the Wilcoxon-Mann-Whitney statistic
    • Washington D.C., USA
    • L. Yan, R. Dodier, M. C. Mozer and R. Wolniewicz, Optimizing classifier performance via the Wilcoxon-Mann-Whitney statistic, Proc. Int. Conf. Machine Learning ICML'03 (Washington D.C., USA, 2003), pp. 848-855.
    • (2003) Proc. Int. Conf. Machine Learning ICML'03 , pp. 848-855
    • Yan, L.1    Dodier, R.2    Mozer, M.C.3    Wolniewicz, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.