-
4
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C. J. C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining Knowl. Discov. 2 (1998) 121-167.
-
(1998)
Data Mining Knowl. Discov.
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
7
-
-
33646023117
-
An introduction to ROC analysis
-
T. Fawcett, An introduction to ROC analysis, Patt. Recogn. Lett. 27 (2006) 861-874.
-
(2006)
Patt. Recogn. Lett.
, vol.27
, pp. 861-874
-
-
Fawcett, T.1
-
8
-
-
14344264748
-
Optimizing area under the ROC curve using gradient descent
-
Ban® , Alberta, Canada
-
A. Herschtal and B. Raskutti, Optimizing area under the ROC curve using gradient descent, Proc. 21st Int. Conf. Machine Learning ICML'04 (Ban® , Alberta, Canada, 2004), pp. 49-56.
-
(2004)
Proc. 21st Int. Conf. Machine Learning ICML'04
, pp. 49-56
-
-
Herschtal, A.1
Raskutti, B.2
-
9
-
-
14344249146
-
Learning large margin classifiers locally and globally
-
Ban® , Alberta, Canada
-
K. Huang, H. Yang, I. King and M. R. Lyu, Learning large margin classifiers locally and globally, Proc. 21st Int. Conf. Machine Learning ICML'04 (Ban® , Alberta, Canada, 2004), pp. 401-408.
-
(2004)
Proc. 21st Int. Conf. Machine Learning ICML'04
, pp. 401-408
-
-
Huang, K.1
Yang, H.2
King, I.3
Lyu, M.R.4
-
10
-
-
33750684755
-
Local learning vs. global learning: An introduction to maxi-min margin machine
-
eds. L. Wang Springer, Berlin
-
K. Huang, H. Yang, I. King and M. R. Lyu, Local learning vs. global learning: An introduction to maxi-min margin machine, in Support Vector Machines: Theory and Applications, eds. L. Wang (Springer, Berlin, 2005), pp. 113-131.
-
(2005)
Support Vector Machines: Theory and Applications
, pp. 113-131
-
-
Huang, K.1
Yang, H.2
King, I.3
Lyu, M.R.4
-
11
-
-
40549124666
-
Maxi-min margin machine: Learning large margin classifiers locally and globally
-
K. Huang, H. Yang, I. King and M. R. Lyu, Maxi-min margin machine: Learning large margin classifiers locally and globally, IEEE Trans. Neural Networks 19 (2008) 260-272.
-
(2008)
IEEE Trans. Neural Networks
, vol.19
, pp. 260-272
-
-
Huang, K.1
Yang, H.2
King, I.3
Lyu, M.R.4
-
12
-
-
69649090538
-
A minimax theorem with application to machine learning, signal processing, and finance
-
S. J. Kim and S. Boyd, A minimax theorem with application to machine learning, signal processing, and finance, SIAM J. Optimiz. 19 (2008) 1344-1367.
-
(2008)
SIAM J. Optimiz.
, vol.19
, pp. 1344-1367
-
-
Kim, S.J.1
Boyd, S.2
-
13
-
-
7044227562
-
AUC: A better measure than accuracy in comparing learning algorithms
-
Halifax, Nova Scotia, Canada
-
C. X. Ling, J. Huang and H. Zhang, AUC: A better measure than accuracy in comparing learning algorithms, Proc. 16th Canadian Conf. Artificial Intelligence AI'03 (Halifax, Nova Scotia, Canada, 2003), pp. 329-341.
-
(2003)
Proc. 16th Canadian Conf. Artificial Intelligence AI'03
, pp. 329-341
-
-
Ling, C.X.1
Huang, J.2
Zhang, H.3
-
14
-
-
84880794162
-
AUC: A statistically consistent and more discriminating measure than accuracy
-
Acapulco, Mexico
-
C. X. Ling, J. Huang and H. Zhang, AUC: A statistically consistent and more discriminating measure than accuracy, Proc. Int. Joint Conf. Artificial Intelligence IJCAI'03 (Acapulco, Mexico, 2003), pp. 519-526.
-
(2003)
Proc. Int. Joint Conf. Artificial Intelligence IJCAI'03
, pp. 519-526
-
-
Ling, C.X.1
Huang, J.2
Zhang, H.3
-
19
-
-
25444471537
-
Support vector machine networks for multi-class classification
-
F. Y. Shih and K. Zhang, Support vector machine networks for multi-class classification, Int. J. Patt. Recogn. Artif. Intell. 19 (2005) 775-786.
-
(2005)
Int. J. Patt. Recogn. Artif. Intell.
, vol.19
, pp. 775-786
-
-
Shih, F.Y.1
Zhang, K.2
-
20
-
-
33847676236
-
Neighborhood property based pattern selection for support vector machines
-
H. Shin, Neighborhood property based pattern selection for support vector machines, Neural Comput. 19 (2007) 816-855.
-
(2007)
Neural Comput
, vol.19
, pp. 816-855
-
-
Shin, H.1
-
21
-
-
44349145068
-
Comparison of ROC and likelihood decision methods in automatic fingerprint verification
-
S. N. Srihari and H. Srinivasan, Comparison of ROC and likelihood decision methods in automatic fingerprint verification, Int. J. Patt. Recogn. Artif. Intell. 22 (2008) 535-553.
-
(2008)
Int. J. Patt. Recogn. Artif. Intell.
, vol.22
, pp. 535-553
-
-
Srihari, S.N.1
Srinivasan, H.2
-
24
-
-
0003742929
-
Inverting modified matrices
-
Statistical Research Group, Princeton University, Princeton, NJ
-
M. A. Woodbury, Inverting modified matrices, Technical Report 42, Statistical Research Group, Princeton University, Princeton, NJ, 1950.
-
(1950)
Technical Report 42
-
-
Woodbury, M.A.1
-
25
-
-
59149086652
-
Structural support vector machine
-
Beijing, China
-
H. Xue, S. C. Chen and Q. Yang, Structural support vector machine, Proc. 15th Int. Symp. Neural Networks ISNN'08 (Beijing, China, 2008), pp. 501-511.
-
(2008)
Proc. 15th Int. Symp. Neural Networks ISNN'08
, pp. 501-511
-
-
Xue, H.1
Chen, S.C.2
Yang, Q.3
-
26
-
-
51649109792
-
Discriminatively regularized least-squares classification
-
H. Xue, S. C. Chen and Q. Yang, Discriminatively regularized least-squares classification, Patt. Recogn. 41 (2009) 93-104.
-
(2009)
Patt. Recogn.
, vol.41
, pp. 93-104
-
-
Xue, H.1
Chen, S.C.2
Yang, Q.3
-
27
-
-
1942451946
-
Optimizing classifier performance via the Wilcoxon-Mann-Whitney statistic
-
Washington D.C., USA
-
L. Yan, R. Dodier, M. C. Mozer and R. Wolniewicz, Optimizing classifier performance via the Wilcoxon-Mann-Whitney statistic, Proc. Int. Conf. Machine Learning ICML'03 (Washington D.C., USA, 2003), pp. 848-855.
-
(2003)
Proc. Int. Conf. Machine Learning ICML'03
, pp. 848-855
-
-
Yan, L.1
Dodier, R.2
Mozer, M.C.3
Wolniewicz, R.4
|