-
2
-
-
0034228914
-
Assessing a mixture model for clustering with the integrated completed likelihood
-
Biernacki C, Celeux G, Govaert G. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans Pattern and Machine Intell 2000, 22:719-725.
-
(2000)
IEEE Trans Pattern and Machine Intell
, vol.22
, pp. 719-725
-
-
Biernacki, C.1
Celeux, G.2
Govaert, G.3
-
3
-
-
36048970168
-
High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length
-
Bouguila N, Ziou D. High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length. IEEE Trans Pattern and Machine Intell 2007, 29:1716-1731.
-
(2007)
IEEE Trans Pattern and Machine Intell
, vol.29
, pp. 1716-1731
-
-
Bouguila, N.1
Ziou, D.2
-
4
-
-
0002757023
-
Probability models and hypotheses testing in partitioning cluster analysis
-
Arabie P, Hubert L, de Soete G, eds. River Edge, NJ: World Scientific Publishing
-
Bock HH. Probability models and hypotheses testing in partitioning cluster analysis. In: Arabie P, Hubert L, de Soete G, eds. Clustering and Classification. River Edge, NJ: World Scientific Publishing; 1996, 377-453.
-
(1996)
Clustering and Classification
, pp. 377-453
-
-
Bock, H.H.1
-
5
-
-
0038183179
-
Testing the number of components in a normal mixture
-
Lo Y, Mendell NR, Rubin DB. Testing the number of components in a normal mixture. Biometrika 2001, 88:767-778.
-
(2001)
Biometrika
, vol.88
, pp. 767-778
-
-
Lo, Y.1
Mendell, N.R.2
Rubin, D.B.3
-
6
-
-
0002728524
-
Mixture-model cluster analysis and choosing the number of clusters using a new informational complexity ICOMP, AIC, and MDL modelselection criteria
-
Bozdogan H, Sclove S, Gupta A, et al., eds. Dordrecht: Kluwer
-
Bozdogan H. Mixture-model cluster analysis and choosing the number of clusters using a new informational complexity ICOMP, AIC, and MDL modelselection criteria. In: Bozdogan H, Sclove S, Gupta A, et al., eds. Multivariate Statistical Modeling. Vol. II. Dordrecht: Kluwer, 1994, 69-113.
-
(1994)
Multivariate Statistical Modeling
, vol.2
, pp. 69-113
-
-
Bozdogan, H.1
-
7
-
-
0004066260
-
-
New York: John Wiley & Sons
-
McLachlan GJ, Peel D. Finite Mixture Models. New York: John Wiley & Sons; 2000. 8. Figueiredo M, Jain AK. Unsupervised learning of finite mixture models. IEEE Trans Pattern andMachine Intell 2002, 24:381-396.
-
(2000)
Finite Mixture Models
-
-
Mclachlan, G.J.1
Peel, D.2
-
9
-
-
0034782618
-
Model-based clustering and data transformations for gene expression data
-
Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL. Model-based clustering and data transformations for gene expression data. Bioinformatics 2001, 17:977-987.
-
(2001)
Bioinformatics
, vol.17
, pp. 977-987
-
-
Yeung, K.Y.1
Fraley, C.2
Murua, A.3
Raftery, A.E.4
Ruzzo, W.L.5
-
10
-
-
33845291376
-
Investigation of several model selection criteria for determining the number of cluster
-
Hu X, Xu L. Investigation of several model selection criteria for determining the number of cluster. Neural Inf Process 2004, 4: 1-10.
-
(2004)
Neural Inf Process
, vol.4
, pp. 1-10
-
-
Hu, X.1
Xu, L.2
-
11
-
-
84950442225
-
Information ratios for validating mixture analyses
-
WindhamMP, Cutler A. Information ratios for validating mixture analyses. J Am Stat Assoc 1992, 87:1188-1192.
-
(1992)
J Am Stat Assoc
, vol.87
, pp. 1188-1192
-
-
Windham, M.P.1
Cutler, A.2
-
12
-
-
0030351528
-
An entropy criterion for assessing the number of clusters in a mixture model
-
Celeux G, Soromento M. An entropy criterion for assessing the number of clusters in a mixture model. J Classification 1996, 13:195-212.
-
(1996)
J Classification
, vol.13
, pp. 195-212
-
-
Celeux, G.1
Soromento, M.2
-
13
-
-
20844432428
-
Maximum weighted likelihood via rival penalized EM for density mixture clustering with automatic model selection
-
Cheung Y. Maximum weighted likelihood via rival penalized EM for density mixture clustering with automatic model selection. IEEE Trans Knowledge Data Eng 2005, 17:750-761.
-
(2005)
IEEE Trans Knowledge Data Eng
, vol.17
, pp. 750-761
-
-
Cheung, Y.1
-
15
-
-
0001820920
-
X-means: extending k-means with efficient estimation of the number of clusters
-
San Francisco: Morgan Kaufmann
-
Pelleg D, Moore A. X-means: extending k-means with efficient estimation of the number of clusters. Proceedings of 17th International Conference on Machine Learning. San Francisco: Morgan Kaufmann; 2000, 727-734.
-
(2000)
Proceedings of 17th International Conference on Machine Learning
, pp. 727-734
-
-
Pelleg, D.1
Moore, A.2
-
16
-
-
33751272141
-
An expansion of X-means for automatically determining the optimal number of clusters
-
Calgary, Canada
-
Ishioka T. An expansion of X-means for automatically determining the optimal number of clusters. Proceedings of International Conference on Computational Intelligence. Calgary, Canada; 2005, 91-96.
-
(2005)
Proceedings of International Conference on Computational Intelligence
, pp. 91-96
-
-
Ishioka, T.1
-
18
-
-
0000930268
-
Hierarchical grouping methods and stopping rules: an evaluation
-
Mojena R. Hierarchical grouping methods and stopping rules: an evaluation. Comput J 1977, 20:359-363.
-
(1977)
Comput J
, vol.20
, pp. 359-363
-
-
Mojena, R.1
-
19
-
-
0000228352
-
A Monte-Carlo study of thirty internal criterion measures for cluster analysis
-
Milligan GW. A Monte-Carlo study of thirty internal criterion measures for cluster analysis. Psychometrika 1981, 46:187-199.
-
(1981)
Psychometrika
, vol.46
, pp. 187-199
-
-
Milligan, G.W.1
-
20
-
-
0032269108
-
How many clusters? Which clustering method? Answers via model-based cluster analysis
-
Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 1988, 41: 578-588.
-
(1988)
Comput J
, vol.41
, pp. 578-588
-
-
Fraley, C.1
Raftery, A.E.2
-
22
-
-
37649028224
-
Finding and evaluating community structure in networks
-
Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys Rev E 2004, 69:026113.
-
(2004)
Phys Rev E
, vol.69
, pp. 026113
-
-
Newman, M.E.J.1
Girvan, M.2
-
24
-
-
0027453616
-
Model-based Gaussian and non-Gaussian clustering
-
Banfield JD, Raftery AE. Model-based Gaussian and non-Gaussian clustering. Biometrics 1993, 49:803-821.
-
(1993)
Biometrics
, vol.49
, pp. 803-821
-
-
Banfield, J.D.1
Raftery, A.E.2
-
25
-
-
0001090009
-
Sequential fitting procedures for linear data aggregation model
-
Mirkin B. Sequential fitting procedures for linear data aggregation model. J Classification 1990, 7:167-195.
-
(1990)
J Classification
, vol.7
, pp. 167-195
-
-
Mirkin, B.1
-
27
-
-
33745223877
-
K-means clustering: a half-century synthesis
-
Steinley D. K-means clustering: a half-century synthesis. Br J Math Stat Psychol 2006, 59:1-34.
-
(2006)
Br J Math Stat Psychol
, vol.59
, pp. 1-34
-
-
Steinley, D.1
-
28
-
-
77953022339
-
Intelligent choice of the number of clusters in K-means clustering: an experimental study with different cluster spreads
-
doi: 10.1007/s00357-010. In press
-
Chiang M-T, Mirkin B. Intelligent choice of the number of clusters in K-means clustering: an experimental study with different cluster spreads. Jf Classification 2010, 28. doi: 10.1007/s00357-010. In press.
-
(2010)
Jf Classification
, vol.28
-
-
Chiang, M.-T.1
Mirkin, B.2
-
29
-
-
70449699857
-
A symmetry based multiobjective clustering technique for automatic evolution of clusters
-
Saha S, Bandyopadhyaya S. A symmetry based multiobjective clustering technique for automatic evolution of clusters. Pattern Recognit 2010, 43:738-751.
-
(2010)
Pattern Recognit
, vol.43
, pp. 738-751
-
-
Saha, S.1
Bandyopadhyaya, S.2
-
30
-
-
34250115918
-
An examination of procedures for determining the number of clusters in a data set
-
Milligan GW, Cooper MC. An examination of procedures for determining the number of clusters in a data set. Psychometrika 1985, 50:159-179.
-
(1985)
Psychometrika
, vol.50
, pp. 159-179
-
-
Milligan, G.W.1
Cooper, M.C.2
-
31
-
-
84972893020
-
A dendrite method for cluster analysis
-
Calinski T, Harabasz J. A dendrite method for cluster analysis. Commun Stat 1974, 3(1): 1-27.
-
(1974)
Commun Stat
, vol.3
, Issue.1
, pp. 1-27
-
-
Calinski, T.1
Harabasz, J.2
-
32
-
-
9444279511
-
-
Text, Speech, and Dialogue: 6th Int Conf. Springer: Berlin
-
Casillas A, Gonzales De Lena MT, Martinez H. Document clustering into an unknown number of clusters using a genetic algorithm. Text, Speech, and Dialogue: 6th Int Conf. Springer: Berlin; 2003, 43-49.
-
(2003)
Document clustering into an unknown number of clusters using a genetic algorithm
, pp. 43-49
-
-
Casillas, A.1
De Lena, M.T.G.2
Martinez, H.3
-
33
-
-
0035532141
-
Estimating the number of clusters in a dataset via the gap statistics
-
Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a dataset via the gap statistics. J Royal Stat Soc B 2001, 63:411-423.
-
(2001)
J Royal Stat Soc B
, vol.63
, pp. 411-423
-
-
Tibshirani, R.1
Walther, G.2
Hastie, T.3
-
34
-
-
36749055295
-
etermining the number of clusters using the weighted gap statistic
-
YanM, Ye K. Determining the number of clusters using the weighted gap statistic. Biometrics 2007, 63:1031-1037.
-
(2007)
Biometrics
, vol.63
, pp. 1031-1037
-
-
Yan, M.1
Ye, K.D.2
-
35
-
-
0023905024
-
A criterion for determining the number of groups in a dataset using sum of squares clustering
-
Krzhanowski W, Lai Y. A criterion for determining the number of groups in a dataset using sum of squares clustering. Biometrics 1985, 44:23-34.
-
(1985)
Biometrics
, vol.44
, pp. 23-34
-
-
Krzhanowski, W.1
Lai, Y.2
-
36
-
-
0242679438
-
Finding the number of clusters in a data set: an information-theoretic approach
-
Sugar CA, James GM. Finding the number of clusters in a data set: an information-theoretic approach. J Am Stat Assoc 2003, 98:750-778.
-
(2003)
J Am Stat Assoc
, vol.98
, pp. 750-778
-
-
Sugar, C.A.1
James, G.M.2
-
37
-
-
0034831822
-
A novel validity index for determination of the optimal number of clusters
-
Kim D, Park Y, Park D. A novel validity index for determination of the optimal number of clusters. IEICE Tans Inf Syst 2001, E84: 281-285.
-
(2001)
IEICE Tans Inf Syst
, vol.84 E
, pp. 281-285
-
-
Kim, D.1
Park, Y.2
Park, D.3
-
38
-
-
25844523365
-
Determination of cluster number in clustering microarray data
-
Shen J, Chang SI, Lee ES, Deng Y, Brown SJ. Determination of cluster number in clustering microarray data. Appl Math Comput 2005, 169:1172-1185.
-
(2005)
Appl Math Comput
, vol.169
, pp. 1172-1185
-
-
Shen, J.1
Chang, S.I.2
Lee, E.S.3
Deng, Y.4
Brown, S.J.5
-
42
-
-
33646944424
-
A method of predicting the number of clusters using Rand's statistic
-
Chae SS, Dubien JL, Warde WD. A method of predicting the number of clusters using Rand's statistic. Comput Stat Data Anal 2006, 50:3531-3546.
-
(2006)
Comput Stat Data Anal
, vol.50
, pp. 3531-3546
-
-
Chae, S.S.1
Dubien, J.L.2
Warde, W.D.3
-
43
-
-
33947159574
-
Evaluation of stability of kmeans cluster ensembles with respect to random initialization
-
Kuncheva LI, Vetrov DP. Evaluation of stability of kmeans cluster ensembles with respect to random initialization. IEEE Trans Pattern Anal Machine Intell 2005, 28:1798-1808.
-
(2005)
IEEE Trans Pattern Anal Machine Intell
, vol.28
, pp. 1798-1808
-
-
Kuncheva, L.I.1
Vetrov, D.P.2
-
44
-
-
0038724494
-
Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data
-
Monti S, Tamayo P, Mesirov J, Golub T. Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learn 2003, 52:91-118.
-
(2003)
Machine Learn
, vol.52
, pp. 91-118
-
-
Monti, S.1
Tamayo, P.2
Mesirov, J.3
Golub, T.4
-
45
-
-
12744281466
-
A comparison of resampling methods for clustering ensembles
-
CSREA Press: Las Vegas, Nevada
-
Minaei-Bidgoli B, Topchy A, PunchWF. A comparison of resampling methods for clustering ensembles. International conference on Machine Learning; Models, Technologies and Application (MLMTA04). CSREA Press: Las Vegas, Nevada; 2004, 939-945.
-
(2004)
International conference on Machine Learning; Models, Technologies and Application (MLMTA04)
, pp. 939-945
-
-
Minaei-Bidgoli, B.1
Topchy, A.2
Punch, W.F.3
-
46
-
-
0037172724
-
A prediction-based resampling method for estimating the number of clusters in a dataset
-
research0036.1-0036.21
-
Dudoit S, Fridlyand J. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol 2002, 3: research0036.1-0036.21.
-
(2002)
Genome Biol
, vol.3
-
-
Dudoit, S.1
Fridlyand, J.2
-
47
-
-
23744437299
-
On a resampling approach for tests on the number of clusters with mixture modelbased clustering of tissue samples
-
McLachlan GJ, Khan N. On a resampling approach for tests on the number of clusters with mixture modelbased clustering of tissue samples. J Multivariate Anal 2004, 90:90-1005.
-
(2004)
J Multivariate Anal
, vol.90
, pp. 90-1005
-
-
McLachlan, G.J.1
Khan, N.2
-
48
-
-
2442611856
-
Stabilitybased validation of clustering solutions
-
Roth V, Lange V, Braun M, Buhmann J. Stabilitybased validation of clustering solutions. Neural Comput 2004, 16:1299-1323.
-
(2004)
Neural Comput
, vol.16
, pp. 1299-1323
-
-
Roth, V.1
Lange, V.2
Braun, M.3
Buhmann, J.4
-
50
-
-
19044364181
-
Optimising k-means clustering results with standard software packages
-
Hand D, Krzhanowski WJ. Optimising k-means clustering results with standard software packages. Comput Stat Data Anal 2005, 49:969-973.
-
(2005)
Comput Stat Data Anal
, vol.49
, pp. 969-973
-
-
Hand, D.1
Krzhanowski, W.J.2
-
51
-
-
0030291361
-
n the number of clusters
-
Hardy A. On the number of clusters. Comput Stat Data Anal 1996, 23:83-96.
-
(1996)
Comput Stat Data Anal
, vol.23
, pp. 83-96
-
-
Hardy, A.O.1
-
52
-
-
34250871625
-
Initializing K-means batch clustering: a critical evaluation of several techniques
-
Steinley D, Brusco M. Initializing K-means batch clustering: a critical evaluation of several techniques. J Classification 2007, 24:99-121.
-
(2007)
J Classification
, vol.24
, pp. 99-121
-
-
Steinley, D.1
Brusco, M.2
-
53
-
-
0033204902
-
An empirical comparison of four initialization methods for K-means algorithm
-
Pena JM, Lozano JA, Larranga P. An empirical comparison of four initialization methods for K-means algorithm. Pattern Recognit Lett 1999, 20:1027-1040.
-
(1999)
Pattern Recognit Lett
, vol.20
, pp. 1027-1040
-
-
Pena, J.M.1
Lozano, J.A.2
Larranga, P.3
-
55
-
-
20444461186
-
Simulations of the formation, evolution and clustering of galaxies and quasars
-
Springel V, White SDM, Jenkins A, Frenk CS, Yoshida N, Gao L, Navarro J, Thacker R, Croton D, Helly J, et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature, 2005, 435: 629-636.
-
(2005)
Nature
, vol.435
, pp. 629-636
-
-
Springel, V.1
White, S.D.M.2
Jenkins, A.3
Frenk, C.S.4
Yoshida, N.5
Gao, L.6
Navarro, J.7
Thacker, R.8
Croton, D.9
Helly, J.10
-
57
-
-
65249117580
-
NIFTI: an evolutionary approach for finding number of clusters inmicroarray data
-
Available at
-
Jonnalagadda S, Srinivanasan R. NIFTI: an evolutionary approach for finding number of clusters inmicroarray data. BMC Bioinformatics 2009, 10:40. Available at: http://www.biomedcentral.com/1471-2105-10-40.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 40
-
-
Jonnalagadda, S.1
Srinivanasan, R.2
-
58
-
-
50149114686
-
Sequential clustering with particle filters-estimating the number of clusters from data
-
Piscataway NJ: IEEE
-
Shubert J, Sedenbladh H. Sequential clustering with particle filters-estimating the number of clusters from data. Proceedings of 8th International Conference on Information Fusion. Piscataway NJ: IEEE; 2005, A4-A3, 1-8.
-
(2005)
Proceedings of 8th International Conference on Information Fusion
, vol.A4-A3
, pp. 1-8
-
-
Shubert, J.1
Sedenbladh, H.2
-
59
-
-
21244479740
-
Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study
-
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005, 14:2611-2620.
-
(2005)
Mol Ecol
, vol.14
, pp. 2611-2620
-
-
Evanno, G.1
Regnaut, S.2
Goudet, J.3
-
60
-
-
34548583274
-
A tutorial on spectral clustering
-
von Luxburg U. A tutorial on spectral clustering. Stat Comput 2007, 17:395-416.
-
(2007)
Stat Comput
, vol.17
, pp. 395-416
-
-
von Luxburg, U.1
-
61
-
-
67649840899
-
Seeing the forest for the trees: using the gene ontology to restructure hierarchical clustering
-
Dotan-Cohen D, Kasif S, Melkman AA. Seeing the forest for the trees: using the gene ontology to restructure hierarchical clustering. Bioinformatics 2009, 25:1789-1795.
-
(2009)
Bioinformatics
, vol.25
, pp. 1789-1795
-
-
Dotan-Cohen, D.1
Kasif, S.2
Melkman, A.A.3
-
62
-
-
69549095896
-
CLEAN: clustering enrichment analysis
-
Freudenberg JM, Joshi VK, Hu Z, Medvedovic M. CLEAN: clustering enrichment analysis. BMC Bioinformatics 2009, 10:234.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 234
-
-
Freudenberg, J.M.1
Joshi, V.K.2
Hu, Z.3
Medvedovic, M.4
-
63
-
-
34548790125
-
Annotation-based distance measures for patient subgroup discovery in clinicalmicroarray studies
-
Lottaz C, Toedling J, Spang R. Annotation-based distance measures for patient subgroup discovery in clinicalmicroarray studies. Bioinformatics 2007, 23: 2256-2264.
-
(2007)
Bioinformatics
, vol.23
, pp. 2256-2264
-
-
Lottaz, C.1
Toedling, J.2
Spang, R.3
-
64
-
-
77949272232
-
Similarity clustering of proteins using substantive knowledge and reconstruction of evolutionary gene histories in herpesvirus
-
Mirkin B, Camargo R, Fenner T, Loizou G, Kellam P. Similarity clustering of proteins using substantive knowledge and reconstruction of evolutionary gene histories in herpesvirus. Theor Chem Acc 2010, 125:569-581.
-
(2010)
Theor Chem Acc
, vol.125
, pp. 569-581
-
-
Mirkin, B.1
Camargo, R.2
Fenner, T.3
Loizou, G.4
Kellam, P.5
|