메뉴 건너뛰기




Volumn 1, Issue 3, 2011, Pages 252-260

Choosing the number of clusters boris mirkin

Author keywords

[No Author keywords available]

Indexed keywords

HIERARCHICAL CLUSTERING; HIERARCHICAL SYSTEMS;

EID: 84857058733     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.15     Document Type: Article
Times cited : (70)

References (64)
  • 2
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated completed likelihood
    • Biernacki C, Celeux G, Govaert G. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans Pattern and Machine Intell 2000, 22:719-725.
    • (2000) IEEE Trans Pattern and Machine Intell , vol.22 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 3
    • 36048970168 scopus 로고    scopus 로고
    • High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length
    • Bouguila N, Ziou D. High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length. IEEE Trans Pattern and Machine Intell 2007, 29:1716-1731.
    • (2007) IEEE Trans Pattern and Machine Intell , vol.29 , pp. 1716-1731
    • Bouguila, N.1    Ziou, D.2
  • 4
    • 0002757023 scopus 로고    scopus 로고
    • Probability models and hypotheses testing in partitioning cluster analysis
    • Arabie P, Hubert L, de Soete G, eds. River Edge, NJ: World Scientific Publishing
    • Bock HH. Probability models and hypotheses testing in partitioning cluster analysis. In: Arabie P, Hubert L, de Soete G, eds. Clustering and Classification. River Edge, NJ: World Scientific Publishing; 1996, 377-453.
    • (1996) Clustering and Classification , pp. 377-453
    • Bock, H.H.1
  • 5
    • 0038183179 scopus 로고    scopus 로고
    • Testing the number of components in a normal mixture
    • Lo Y, Mendell NR, Rubin DB. Testing the number of components in a normal mixture. Biometrika 2001, 88:767-778.
    • (2001) Biometrika , vol.88 , pp. 767-778
    • Lo, Y.1    Mendell, N.R.2    Rubin, D.B.3
  • 6
    • 0002728524 scopus 로고
    • Mixture-model cluster analysis and choosing the number of clusters using a new informational complexity ICOMP, AIC, and MDL modelselection criteria
    • Bozdogan H, Sclove S, Gupta A, et al., eds. Dordrecht: Kluwer
    • Bozdogan H. Mixture-model cluster analysis and choosing the number of clusters using a new informational complexity ICOMP, AIC, and MDL modelselection criteria. In: Bozdogan H, Sclove S, Gupta A, et al., eds. Multivariate Statistical Modeling. Vol. II. Dordrecht: Kluwer, 1994, 69-113.
    • (1994) Multivariate Statistical Modeling , vol.2 , pp. 69-113
    • Bozdogan, H.1
  • 7
    • 0004066260 scopus 로고    scopus 로고
    • New York: John Wiley & Sons
    • McLachlan GJ, Peel D. Finite Mixture Models. New York: John Wiley & Sons; 2000. 8. Figueiredo M, Jain AK. Unsupervised learning of finite mixture models. IEEE Trans Pattern andMachine Intell 2002, 24:381-396.
    • (2000) Finite Mixture Models
    • Mclachlan, G.J.1    Peel, D.2
  • 9
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL. Model-based clustering and data transformations for gene expression data. Bioinformatics 2001, 17:977-987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3    Raftery, A.E.4    Ruzzo, W.L.5
  • 10
    • 33845291376 scopus 로고    scopus 로고
    • Investigation of several model selection criteria for determining the number of cluster
    • Hu X, Xu L. Investigation of several model selection criteria for determining the number of cluster. Neural Inf Process 2004, 4: 1-10.
    • (2004) Neural Inf Process , vol.4 , pp. 1-10
    • Hu, X.1    Xu, L.2
  • 11
    • 84950442225 scopus 로고
    • Information ratios for validating mixture analyses
    • WindhamMP, Cutler A. Information ratios for validating mixture analyses. J Am Stat Assoc 1992, 87:1188-1192.
    • (1992) J Am Stat Assoc , vol.87 , pp. 1188-1192
    • Windham, M.P.1    Cutler, A.2
  • 12
    • 0030351528 scopus 로고    scopus 로고
    • An entropy criterion for assessing the number of clusters in a mixture model
    • Celeux G, Soromento M. An entropy criterion for assessing the number of clusters in a mixture model. J Classification 1996, 13:195-212.
    • (1996) J Classification , vol.13 , pp. 195-212
    • Celeux, G.1    Soromento, M.2
  • 13
    • 20844432428 scopus 로고    scopus 로고
    • Maximum weighted likelihood via rival penalized EM for density mixture clustering with automatic model selection
    • Cheung Y. Maximum weighted likelihood via rival penalized EM for density mixture clustering with automatic model selection. IEEE Trans Knowledge Data Eng 2005, 17:750-761.
    • (2005) IEEE Trans Knowledge Data Eng , vol.17 , pp. 750-761
    • Cheung, Y.1
  • 15
    • 0001820920 scopus 로고    scopus 로고
    • X-means: extending k-means with efficient estimation of the number of clusters
    • San Francisco: Morgan Kaufmann
    • Pelleg D, Moore A. X-means: extending k-means with efficient estimation of the number of clusters. Proceedings of 17th International Conference on Machine Learning. San Francisco: Morgan Kaufmann; 2000, 727-734.
    • (2000) Proceedings of 17th International Conference on Machine Learning , pp. 727-734
    • Pelleg, D.1    Moore, A.2
  • 16
    • 33751272141 scopus 로고    scopus 로고
    • An expansion of X-means for automatically determining the optimal number of clusters
    • Calgary, Canada
    • Ishioka T. An expansion of X-means for automatically determining the optimal number of clusters. Proceedings of International Conference on Computational Intelligence. Calgary, Canada; 2005, 91-96.
    • (2005) Proceedings of International Conference on Computational Intelligence , pp. 91-96
    • Ishioka, T.1
  • 18
    • 0000930268 scopus 로고
    • Hierarchical grouping methods and stopping rules: an evaluation
    • Mojena R. Hierarchical grouping methods and stopping rules: an evaluation. Comput J 1977, 20:359-363.
    • (1977) Comput J , vol.20 , pp. 359-363
    • Mojena, R.1
  • 19
    • 0000228352 scopus 로고
    • A Monte-Carlo study of thirty internal criterion measures for cluster analysis
    • Milligan GW. A Monte-Carlo study of thirty internal criterion measures for cluster analysis. Psychometrika 1981, 46:187-199.
    • (1981) Psychometrika , vol.46 , pp. 187-199
    • Milligan, G.W.1
  • 20
    • 0032269108 scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 1988, 41: 578-588.
    • (1988) Comput J , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 22
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys Rev E 2004, 69:026113.
    • (2004) Phys Rev E , vol.69 , pp. 026113
    • Newman, M.E.J.1    Girvan, M.2
  • 24
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield JD, Raftery AE. Model-based Gaussian and non-Gaussian clustering. Biometrics 1993, 49:803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 25
    • 0001090009 scopus 로고
    • Sequential fitting procedures for linear data aggregation model
    • Mirkin B. Sequential fitting procedures for linear data aggregation model. J Classification 1990, 7:167-195.
    • (1990) J Classification , vol.7 , pp. 167-195
    • Mirkin, B.1
  • 27
    • 33745223877 scopus 로고    scopus 로고
    • K-means clustering: a half-century synthesis
    • Steinley D. K-means clustering: a half-century synthesis. Br J Math Stat Psychol 2006, 59:1-34.
    • (2006) Br J Math Stat Psychol , vol.59 , pp. 1-34
    • Steinley, D.1
  • 28
    • 77953022339 scopus 로고    scopus 로고
    • Intelligent choice of the number of clusters in K-means clustering: an experimental study with different cluster spreads
    • doi: 10.1007/s00357-010. In press
    • Chiang M-T, Mirkin B. Intelligent choice of the number of clusters in K-means clustering: an experimental study with different cluster spreads. Jf Classification 2010, 28. doi: 10.1007/s00357-010. In press.
    • (2010) Jf Classification , vol.28
    • Chiang, M.-T.1    Mirkin, B.2
  • 29
    • 70449699857 scopus 로고    scopus 로고
    • A symmetry based multiobjective clustering technique for automatic evolution of clusters
    • Saha S, Bandyopadhyaya S. A symmetry based multiobjective clustering technique for automatic evolution of clusters. Pattern Recognit 2010, 43:738-751.
    • (2010) Pattern Recognit , vol.43 , pp. 738-751
    • Saha, S.1    Bandyopadhyaya, S.2
  • 30
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan GW, Cooper MC. An examination of procedures for determining the number of clusters in a data set. Psychometrika 1985, 50:159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 31
    • 84972893020 scopus 로고
    • A dendrite method for cluster analysis
    • Calinski T, Harabasz J. A dendrite method for cluster analysis. Commun Stat 1974, 3(1): 1-27.
    • (1974) Commun Stat , vol.3 , Issue.1 , pp. 1-27
    • Calinski, T.1    Harabasz, J.2
  • 33
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a dataset via the gap statistics
    • Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a dataset via the gap statistics. J Royal Stat Soc B 2001, 63:411-423.
    • (2001) J Royal Stat Soc B , vol.63 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 34
    • 36749055295 scopus 로고    scopus 로고
    • etermining the number of clusters using the weighted gap statistic
    • YanM, Ye K. Determining the number of clusters using the weighted gap statistic. Biometrics 2007, 63:1031-1037.
    • (2007) Biometrics , vol.63 , pp. 1031-1037
    • Yan, M.1    Ye, K.D.2
  • 35
    • 0023905024 scopus 로고
    • A criterion for determining the number of groups in a dataset using sum of squares clustering
    • Krzhanowski W, Lai Y. A criterion for determining the number of groups in a dataset using sum of squares clustering. Biometrics 1985, 44:23-34.
    • (1985) Biometrics , vol.44 , pp. 23-34
    • Krzhanowski, W.1    Lai, Y.2
  • 36
    • 0242679438 scopus 로고    scopus 로고
    • Finding the number of clusters in a data set: an information-theoretic approach
    • Sugar CA, James GM. Finding the number of clusters in a data set: an information-theoretic approach. J Am Stat Assoc 2003, 98:750-778.
    • (2003) J Am Stat Assoc , vol.98 , pp. 750-778
    • Sugar, C.A.1    James, G.M.2
  • 37
    • 0034831822 scopus 로고    scopus 로고
    • A novel validity index for determination of the optimal number of clusters
    • Kim D, Park Y, Park D. A novel validity index for determination of the optimal number of clusters. IEICE Tans Inf Syst 2001, E84: 281-285.
    • (2001) IEICE Tans Inf Syst , vol.84 E , pp. 281-285
    • Kim, D.1    Park, Y.2    Park, D.3
  • 38
    • 25844523365 scopus 로고    scopus 로고
    • Determination of cluster number in clustering microarray data
    • Shen J, Chang SI, Lee ES, Deng Y, Brown SJ. Determination of cluster number in clustering microarray data. Appl Math Comput 2005, 169:1172-1185.
    • (2005) Appl Math Comput , vol.169 , pp. 1172-1185
    • Shen, J.1    Chang, S.I.2    Lee, E.S.3    Deng, Y.4    Brown, S.J.5
  • 42
    • 33646944424 scopus 로고    scopus 로고
    • A method of predicting the number of clusters using Rand's statistic
    • Chae SS, Dubien JL, Warde WD. A method of predicting the number of clusters using Rand's statistic. Comput Stat Data Anal 2006, 50:3531-3546.
    • (2006) Comput Stat Data Anal , vol.50 , pp. 3531-3546
    • Chae, S.S.1    Dubien, J.L.2    Warde, W.D.3
  • 43
    • 33947159574 scopus 로고    scopus 로고
    • Evaluation of stability of kmeans cluster ensembles with respect to random initialization
    • Kuncheva LI, Vetrov DP. Evaluation of stability of kmeans cluster ensembles with respect to random initialization. IEEE Trans Pattern Anal Machine Intell 2005, 28:1798-1808.
    • (2005) IEEE Trans Pattern Anal Machine Intell , vol.28 , pp. 1798-1808
    • Kuncheva, L.I.1    Vetrov, D.P.2
  • 44
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data
    • Monti S, Tamayo P, Mesirov J, Golub T. Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learn 2003, 52:91-118.
    • (2003) Machine Learn , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 46
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • research0036.1-0036.21
    • Dudoit S, Fridlyand J. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol 2002, 3: research0036.1-0036.21.
    • (2002) Genome Biol , vol.3
    • Dudoit, S.1    Fridlyand, J.2
  • 47
    • 23744437299 scopus 로고    scopus 로고
    • On a resampling approach for tests on the number of clusters with mixture modelbased clustering of tissue samples
    • McLachlan GJ, Khan N. On a resampling approach for tests on the number of clusters with mixture modelbased clustering of tissue samples. J Multivariate Anal 2004, 90:90-1005.
    • (2004) J Multivariate Anal , vol.90 , pp. 90-1005
    • McLachlan, G.J.1    Khan, N.2
  • 48
    • 2442611856 scopus 로고    scopus 로고
    • Stabilitybased validation of clustering solutions
    • Roth V, Lange V, Braun M, Buhmann J. Stabilitybased validation of clustering solutions. Neural Comput 2004, 16:1299-1323.
    • (2004) Neural Comput , vol.16 , pp. 1299-1323
    • Roth, V.1    Lange, V.2    Braun, M.3    Buhmann, J.4
  • 49
  • 50
    • 19044364181 scopus 로고    scopus 로고
    • Optimising k-means clustering results with standard software packages
    • Hand D, Krzhanowski WJ. Optimising k-means clustering results with standard software packages. Comput Stat Data Anal 2005, 49:969-973.
    • (2005) Comput Stat Data Anal , vol.49 , pp. 969-973
    • Hand, D.1    Krzhanowski, W.J.2
  • 51
    • 0030291361 scopus 로고    scopus 로고
    • n the number of clusters
    • Hardy A. On the number of clusters. Comput Stat Data Anal 1996, 23:83-96.
    • (1996) Comput Stat Data Anal , vol.23 , pp. 83-96
    • Hardy, A.O.1
  • 52
    • 34250871625 scopus 로고    scopus 로고
    • Initializing K-means batch clustering: a critical evaluation of several techniques
    • Steinley D, Brusco M. Initializing K-means batch clustering: a critical evaluation of several techniques. J Classification 2007, 24:99-121.
    • (2007) J Classification , vol.24 , pp. 99-121
    • Steinley, D.1    Brusco, M.2
  • 53
    • 0033204902 scopus 로고    scopus 로고
    • An empirical comparison of four initialization methods for K-means algorithm
    • Pena JM, Lozano JA, Larranga P. An empirical comparison of four initialization methods for K-means algorithm. Pattern Recognit Lett 1999, 20:1027-1040.
    • (1999) Pattern Recognit Lett , vol.20 , pp. 1027-1040
    • Pena, J.M.1    Lozano, J.A.2    Larranga, P.3
  • 57
    • 65249117580 scopus 로고    scopus 로고
    • NIFTI: an evolutionary approach for finding number of clusters inmicroarray data
    • Available at
    • Jonnalagadda S, Srinivanasan R. NIFTI: an evolutionary approach for finding number of clusters inmicroarray data. BMC Bioinformatics 2009, 10:40. Available at: http://www.biomedcentral.com/1471-2105-10-40.
    • (2009) BMC Bioinformatics , vol.10 , pp. 40
    • Jonnalagadda, S.1    Srinivanasan, R.2
  • 58
    • 50149114686 scopus 로고    scopus 로고
    • Sequential clustering with particle filters-estimating the number of clusters from data
    • Piscataway NJ: IEEE
    • Shubert J, Sedenbladh H. Sequential clustering with particle filters-estimating the number of clusters from data. Proceedings of 8th International Conference on Information Fusion. Piscataway NJ: IEEE; 2005, A4-A3, 1-8.
    • (2005) Proceedings of 8th International Conference on Information Fusion , vol.A4-A3 , pp. 1-8
    • Shubert, J.1    Sedenbladh, H.2
  • 59
    • 21244479740 scopus 로고    scopus 로고
    • Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study
    • Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005, 14:2611-2620.
    • (2005) Mol Ecol , vol.14 , pp. 2611-2620
    • Evanno, G.1    Regnaut, S.2    Goudet, J.3
  • 60
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • von Luxburg U. A tutorial on spectral clustering. Stat Comput 2007, 17:395-416.
    • (2007) Stat Comput , vol.17 , pp. 395-416
    • von Luxburg, U.1
  • 61
    • 67649840899 scopus 로고    scopus 로고
    • Seeing the forest for the trees: using the gene ontology to restructure hierarchical clustering
    • Dotan-Cohen D, Kasif S, Melkman AA. Seeing the forest for the trees: using the gene ontology to restructure hierarchical clustering. Bioinformatics 2009, 25:1789-1795.
    • (2009) Bioinformatics , vol.25 , pp. 1789-1795
    • Dotan-Cohen, D.1    Kasif, S.2    Melkman, A.A.3
  • 63
    • 34548790125 scopus 로고    scopus 로고
    • Annotation-based distance measures for patient subgroup discovery in clinicalmicroarray studies
    • Lottaz C, Toedling J, Spang R. Annotation-based distance measures for patient subgroup discovery in clinicalmicroarray studies. Bioinformatics 2007, 23: 2256-2264.
    • (2007) Bioinformatics , vol.23 , pp. 2256-2264
    • Lottaz, C.1    Toedling, J.2    Spang, R.3
  • 64
    • 77949272232 scopus 로고    scopus 로고
    • Similarity clustering of proteins using substantive knowledge and reconstruction of evolutionary gene histories in herpesvirus
    • Mirkin B, Camargo R, Fenner T, Loizou G, Kellam P. Similarity clustering of proteins using substantive knowledge and reconstruction of evolutionary gene histories in herpesvirus. Theor Chem Acc 2010, 125:569-581.
    • (2010) Theor Chem Acc , vol.125 , pp. 569-581
    • Mirkin, B.1    Camargo, R.2    Fenner, T.3    Loizou, G.4    Kellam, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.