메뉴 건너뛰기




Volumn 25, Issue 14, 2009, Pages 1789-1795

Seeing the forest for the trees: Using the Gene Ontology to restructure hierarchical clustering

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BREAST CANCER; CANCER GENETICS; CLUSTER ANALYSIS; GENE EXPRESSION; GENETIC ALGORITHM; GLUCOSE METABOLISM; HUMAN; INTERMETHOD COMPARISON; PHYLOGENETIC TREE; PRIORITY JOURNAL; PROTEIN PROTEIN INTERACTION; TUMOR IMMUNITY;

EID: 67649840899     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btp327     Document Type: Article
Times cited : (24)

References (29)
  • 1
    • 36049044228 scopus 로고    scopus 로고
    • Towards knowledge-based gene expression data mining
    • Bellazzi,R., and Zupan,B (2007) Towards knowledge-based gene expression data mining. J. Biomed. Inform., 6, 787-802.
    • (2007) J. Biomed. Inform , vol.6 , pp. 787-802
    • Bellazzi, R.1    Zupan, B.2
  • 2
    • 10244264786 scopus 로고    scopus 로고
    • The CRASSS plug-in for integrating annotation data with hierarchical clustering results
    • Buehler,E.C. et al. (2004) The CRASSS plug-in for integrating annotation data with hierarchical clustering results. Bioinformatics 20, 3266-3269.
    • (2004) Bioinformatics , vol.20 , pp. 3266-3269
    • Buehler, E.C.1
  • 3
    • 3142749026 scopus 로고    scopus 로고
    • A knowledge-based clustering algorithm driven by Gene Ontology
    • Cheng,J. et al. (2004) A knowledge-based clustering algorithm driven by Gene Ontology. J. Biopharm. Stat., 14, 687-700.
    • (2004) J. Biopharm. Stat , vol.14 , pp. 687-700
    • Cheng, J.1
  • 4
    • 33947602811 scopus 로고    scopus 로고
    • Siglecs and their roles in the immune system
    • Crocker,P.R. et al. (2007) Siglecs and their roles in the immune system. Nat. Rev. Immunol., 7, 255-266.
    • (2007) Nat. Rev. Immunol , vol.7 , pp. 255-266
    • Crocker, P.R.1
  • 5
    • 22744458472 scopus 로고    scopus 로고
    • Pathways to the analysis of microarray data
    • Curtis,R.K. et al. (2005) Pathways to the analysis of microarray data. Trends Biotechnol., 23, 429-435.
    • (2005) Trends Biotechnol , vol.23 , pp. 429-435
    • Curtis, R.K.1
  • 6
    • 33646584520 scopus 로고    scopus 로고
    • GOurmet: A tool for quantitative comparison and visualization of gene expression profiles based on gene ontology (GO) distributions
    • Doherty,J.M. et al. GOurmet: A tool for quantitative comparison and visualization of gene expression profiles based on gene ontology (GO) distributions. BMC Bioinformatics, 7, 151.
    • BMC Bioinformatics , vol.7 , pp. 151
    • Doherty, J.M.1
  • 7
    • 36949014067 scopus 로고    scopus 로고
    • Hierarchical tree snipping: Clustering guided by prior knowledge
    • Dotan-Cohen,D. et al. (2007) Hierarchical tree snipping: clustering guided by prior knowledge. Bioinformatics, 23, 3335-3342.
    • (2007) Bioinformatics , vol.23 , pp. 3335-3342
    • Dotan-Cohen, D.1
  • 8
    • 33645281761 scopus 로고    scopus 로고
    • Knowledge guided analysis of microarray data
    • Fang,Z. et al. (2006) Knowledge guided analysis of microarray data. J. Biomed. Inform., 39, 401-411.
    • (2006) J. Biomed. Inform , vol.39 , pp. 401-411
    • Fang, Z.1
  • 9
    • 8144228566 scopus 로고    scopus 로고
    • Why do cancers have high aerobic glycolysis?
    • Gatenby,R.A. and Gillies,R.J. (2004) Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer, 4, 891-899.
    • (2004) Nat. Rev. Cancer , vol.4 , pp. 891-899
    • Gatenby, R.A.1    Gillies, R.J.2
  • 10
    • 0038014879 scopus 로고    scopus 로고
    • Co-clustering of biological networks and gene expression data
    • Hanisch,D. et al.. (2002) Co-clustering of biological networks and gene expression data. Bioinformatics, 18, 145-154.
    • (2002) Bioinformatics , vol.18 , pp. 145-154
    • Hanisch, D.1
  • 11
    • 33646895693 scopus 로고    scopus 로고
    • Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data
    • Huang,D. and Pan,W. (2006) Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data. Bioinformatics, 22, 1259-1268.
    • (2006) Bioinformatics , vol.22 , pp. 1259-1268
    • Huang, D.1    Pan, W.2
  • 13
    • 24644470505 scopus 로고    scopus 로고
    • Ontological analysis of gene expression data: Current tools, limitations, and open problems
    • Khatri,P., and Draghici,S. (2005) Ontological analysis of gene expression data: Current tools, limitations, and open problems. Bioinformatics, 21, 3587-3595.
    • (2005) Bioinformatics , vol.21 , pp. 3587-3595
    • Khatri, P.1    Draghici, S.2
  • 14
    • 33646862135 scopus 로고    scopus 로고
    • A factor analysis model for functional genomics
    • Kustra,R. et al. (2006) A factor analysis model for functional genomics. BMC Bioinformatics, 7, 216.
    • (2006) BMC Bioinformatics , vol.7 , pp. 216
    • Kustra, R.1
  • 15
    • 67649838896 scopus 로고    scopus 로고
    • Data-fusion in clustering microarray data: Balancing discovery and interpretability
    • Kustra,R. and Zagdanski,A. (2007) Data-fusion in clustering microarray data: Balancing discovery and interpretability. IEEE/ACM Trans. Comput. Biol. Bioinform., 1, 1.
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinform , vol.1 , pp. 1
    • Kustra, R.1    Zagdanski, A.2
  • 16
    • 0005180705 scopus 로고    scopus 로고
    • An information-theoretic definition of similarity
    • Morgan Kaufmann, San Francisco, CA, pp
    • Lin,D. (1998) An information-theoretic definition of similarity. In Proceedings of the 15th International Conference on Machine Learning. Morgan Kaufmann, San Francisco, CA, pp. 296-304.
    • (1998) Proceedings of the 15th International Conference on Machine Learning , pp. 296-304
    • Lin, D.1
  • 17
    • 0037480738 scopus 로고    scopus 로고
    • Investigating semantic similarity measures across the Gene Ontology: The relationship between sequence and annotation
    • Lord,P.W. et al. (2003) Investigating semantic similarity measures across the Gene Ontology: The relationship between sequence and annotation. Bioinformatics, 19, 1275-1283.
    • (2003) Bioinformatics , vol.19 , pp. 1275-1283
    • Lord, P.W.1
  • 18
    • 26844447962 scopus 로고    scopus 로고
    • Polymorphism of the mouse gene for the interleukin 10 receptor alpha chain (Il10ra) and its association with the autoimmune phenotype
    • Qi,Z.M. et al. (2005) Polymorphism of the mouse gene for the interleukin 10 receptor alpha chain (Il10ra) and its association with the autoimmune phenotype. Immunogenetics, 57, 697-702.
    • (2005) Immunogenetics , vol.57 , pp. 697-702
    • Qi, Z.M.1
  • 19
    • 0002016474 scopus 로고    scopus 로고
    • Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language
    • Resnik,P. (1999) Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. J. Artif. Intell. Res., 11, 95-130.
    • (1999) J. Artif. Intell. Res , vol.11 , pp. 95-130
    • Resnik, P.1
  • 20
    • 33748335463 scopus 로고    scopus 로고
    • A new measure for functional similarity of gene products based on Gene Ontology
    • Schlicker,A. et al.. (2006) A new measure for functional similarity of gene products based on Gene Ontology. BMC Bioinformatics, 7, 302.
    • (2006) BMC Bioinformatics , vol.7 , pp. 302
    • Schlicker, A.1
  • 21
    • 0023691747 scopus 로고
    • Isolation of a cDNA encoding CD33, a differentiation antigen of myeloid progenitor cells
    • Simmons,D. and Seed,B. (1988) Isolation of a cDNA encoding CD33, a differentiation antigen of myeloid progenitor cells. J. Immunol., 141, 2797-2800.
    • (1988) J. Immunol , vol.141 , pp. 2797-2800
    • Simmons, D.1    Seed, B.2
  • 22
    • 4344660263 scopus 로고    scopus 로고
    • A memetic co-clustering algorithm for gene expression profiles and biological annotation
    • Speer,N. et al. (2004) A memetic co-clustering algorithm for gene expression profiles and biological annotation. CIBCB, 2, 1631-1638.
    • (2004) CIBCB , vol.2 , pp. 1631-1638
    • Speer, N.1
  • 23
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman,P.T. et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell., 9, 3273-3297.
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1
  • 24
    • 34648829133 scopus 로고    scopus 로고
    • An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer
    • Teschendorff,A.E. et al. (2007) An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol., 8, R157.
    • (2007) Genome Biol , vol.8
    • Teschendorff, A.E.1
  • 25
    • 2942601249 scopus 로고    scopus 로고
    • Selection of informative clusters from hierarchical cluster tree with gene classes
    • Toronen,P. (2004). Selection of informative clusters from hierarchical cluster tree with gene classes. BMC Bioinformatics, 5, 32.
    • (2004) BMC Bioinformatics , vol.5 , pp. 32
    • Toronen, P.1
  • 26
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • van't Veer,L.J. et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530-536.
    • (2002) Nature , vol.415 , pp. 530-536
    • van't Veer, L.J.1
  • 28
    • 3242773687 scopus 로고    scopus 로고
    • Modulation of red cell glycolysis: Interactions between vertebrate hemoglobins and cytoplasmic domains of band 3 red cell membrane proteins
    • Weber,R.E. et al. (2004) Modulation of red cell glycolysis: interactions between vertebrate hemoglobins and cytoplasmic domains of band 3 red cell membrane proteins. Am. J. Physiol. Regul. Integr. Comp Physiol., 287, 454-464.
    • (2004) Am. J. Physiol. Regul. Integr. Comp Physiol , vol.287 , pp. 454-464
    • Weber, R.E.1
  • 29
    • 36949031129 scopus 로고    scopus 로고
    • Comparing algorithms for clustering of expression data - how to assess gene clusters
    • Humana press, Totowa, NJ
    • Yona,G. et al. (2007) Comparing algorithms for clustering of expression data - how to assess gene clusters. In Computational Systems Biology. Humana press, Totowa, NJ.
    • (2007) Computational Systems Biology
    • Yona, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.