메뉴 건너뛰기




Volumn 17, Issue 6, 2005, Pages 750-761

Maximum weighted likelihood via rival penalized EM for density mixture clustering with automatic model selection

Author keywords

Cluster number; Generalized rival penalization controlled competitive learning; Maximum weighted likelihood; Rival penalized expectation maximization algorithm; Stochastic implementation

Indexed keywords

DATA PROCESSING; IMAGE SEGMENTATION; KNOWLEDGE ENGINEERING; MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION; PROBABILITY DENSITY FUNCTION; STATISTICAL METHODS; STOCHASTIC CONTROL SYSTEMS;

EID: 20844432428     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2005.97     Document Type: Article
Times cited : (84)

References (25)
  • 1
    • 0025225150 scopus 로고
    • Competitive learning algorithms for vector quantization
    • S.C. Ahalt, A.K. Krishnamurty, P. Chen, and D.E. Melton, "Competitive Learning Algorithms for Vector Quantization," Neural Networks, vol. 3, pp. 277-291, 1990.
    • (1990) Neural Networks , vol.3 , pp. 277-291
    • Ahalt, S.C.1    Krishnamurty, A.K.2    Chen, P.3    Melton, D.E.4
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • H. Akaike, "Information Theory and an Extension of the Maximum Likelihood Principle," Proc. Second Int'l Symp. Information Theory, pp. 267-281, 1973.
    • (1973) Proc. Second Int'l Symp. Information Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 0016355478 scopus 로고
    • A new look at the statistical model identfication
    • H. Akaike, "A New Look at the Statistical Model Identfication," IEEE Trans. Automatic Control AC-19, pp. 716-723, 1974.
    • (1974) IEEE Trans. Automatic Control AC-19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 34250108028 scopus 로고
    • MoDel Selection and Akaike's information criterion: The general theory and its analytical extensions
    • H. Bozdogan, "Model Selection and Akaike's Information Criterion: The General Theory and Its Analytical Extensions," Psychometrika, vol. 52, no. 3, pp. 345-370, 1987.
    • (1987) Psychometrika , vol.52 , Issue.3 , pp. 345-370
    • Bozdogan, H.1
  • 5
    • 0002728524 scopus 로고
    • Mixture-model cluster analysis using model selection criteria and a new information measure of complexity
    • H. Bozdogan, "Mixture-Model Cluster Analysis Using Model Selection Criteria and a New Information Measure of Complexity," Proc. First US/Japan Conf. the Frontiers of Statistical Modeling, vol. 2, pp. 69-113, 1994.
    • (1994) Proc. First US/Japan Conf. the Frontiers of Statistical Modeling , vol.2 , pp. 69-113
    • Bozdogan, H.1
  • 6
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • J. Banfield and A. Raftery, "Model-Based Gaussian and Non-Gaussian Clustering," Biometrics, vol. 49, pp. 803-821, 1993.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.1    Raftery, A.2
  • 7
    • 0031069945 scopus 로고    scopus 로고
    • The LBG-U method for vector quantization - An improvement over LBG inspired from neural networks
    • B. Fritzke, "The LBG-U Method for Vector Quantization - An Improvement over LBG Inspired From Neural Networks," Neural Processing Letters, vol. 5, no. 1, pp. 35-45, 1997.
    • (1997) Neural Processing Letters , vol.5 , Issue.1 , pp. 35-45
    • Fritzke, B.1
  • 9
    • 0041328214 scopus 로고    scopus 로고
    • K*-means - A new generalized k-means clustering algorithm
    • Y.M. Cheung, "k*-Means - A New Generalized k-Means Clustering Algorithm," Pattern Recognition Letters, vol. 24, no. 15, pp. 2883-2893, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.15 , pp. 2883-2893
    • Cheung, Y.M.1
  • 10
  • 14
    • 0025629256 scopus 로고
    • On the color image segmentation algorithm based on the thresholding and the fuzzy C-means techniques
    • Y.W. Lim and S.U. Lee, "On the Color Image Segmentation Algorithm Based on the Thresholding and the Fuzzy C-Means Techniques," Pattern Recognition, vol. 23, no. 9, pp. 935-952, 1990.
    • (1990) Pattern Recognition , vol.23 , Issue.9 , pp. 935-952
    • Lim, Y.W.1    Lee, S.U.2
  • 15
    • 0018918171 scopus 로고
    • An algorithm for vector quantizer design
    • Y. Linde, A. Buzo, and R.M. Gray, "An Algorithm for Vector Quantizer Design," IEEE Trans. Comm., COM-28, pp. 84-95, 1980.
    • (1980) IEEE Trans. Comm. , vol.COM-28 , pp. 84-95
    • Linde, Y.1    Buzo, A.2    Gray, R.M.3
  • 16
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Berkeley, Calif.: Univ. of California Press
    • J.B. MacQueen, "Some Methods for Classification and Analysis of Multivariate Observations," Proc. Fifth Berkeley Symp. Math. Statistics and Probability, vol. 1, pp. 281-297, Berkeley, Calif.: Univ. of California Press, 1967.
    • (1967) Proc. Fifth Berkeley Symp. Math. Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 19
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood, and the em algorithm
    • R.A. Redner and H.F. Waler, "Mixture Densities, Maximum Likelihood, and the EM Algorithm," SIAM Rev., vol. 26, pp. 195-239, 1984.
    • (1984) SIAM Rev. , vol.26 , pp. 195-239
    • Redner, R.A.1    Waler, H.F.2
  • 20
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, "Estimating the Dimension of a Model," The Annals of Statistics, vol. 6, no. 2, pp. 461-464, 1978.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 23
    • 0031270958 scopus 로고    scopus 로고
    • Bayesian Ying-Yang machine, clustering and number of clusters
    • L. Xu, "Bayesian Ying-Yang Machine, Clustering and Number of Clusters," Pattern Recognition Letters, vol. 18, nos. 11-13, pp. 1167-1178, 1997.
    • (1997) Pattern Recognition Letters , vol.18 , Issue.11-13 , pp. 1167-1178
    • Xu, L.1
  • 24
    • 0031628777 scopus 로고    scopus 로고
    • Rival penalized competitive learning, finite mixture, and multisets clustering
    • L. Xu, "Rival Penalized Competitive Learning, Finite Mixture, and Multisets Clustering," Proc. Inl'l Joint Conf. Neural Networks, vol. 2, pp. 2525-2530, 1998.
    • (1998) Proc. Inl'l Joint Conf. Neural Networks , vol.2 , pp. 2525-2530
    • Xu, L.1
  • 25
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBF Net, and Curve Detection
    • L. Xu, A. Krzyżak, and E. Oja, "Rival Penalized Competitive Learning for Clustering Analysis, RBF Net, and Curve Detection," IEEE Trans. Neural Networks, vol. 4, pp. 636-648, 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 636-648
    • Xu, L.1    Krzyzak, A.2    Oja, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.