메뉴 건너뛰기




Volumn 45, Issue 6, 2012, Pages 2251-2265

Determining the number of clusters using information entropy for mixed data

Author keywords

Cluster validity index; Clustering; Information entropy; k Prototypes algorithm; Mixed data; Number of clusters

Indexed keywords

CLUSTER VALIDITY INDICES; CLUSTERING; INFORMATION ENTROPY; MIXED DATA; NUMBER OF CLUSTERS;

EID: 84857042237     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.12.017     Document Type: Article
Times cited : (119)

References (64)
  • 3
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • DOI 10.1109/TNN.2005.845141
    • R. Xu, and D. Wunsch II Survey of clustering algorithms IEEE Transactions on Neural Networks 16 3 2005 645 678 (Pubitemid 40718010)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch II, D.2
  • 4
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • A.K. Jain Data clustering: 50 years beyond k-means Pattern Recognition Letters 31 8 2010 651 666
    • (2010) Pattern Recognition Letters , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 5
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering and correlation clustering
    • H.P. Kriegel, P. Kröger, and A. Zimek Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering and correlation clustering ACM Transactions on Knowledge Discovery from Data 3 1 2009 1 58
    • (2009) ACM Transactions on Knowledge Discovery from Data , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.P.1    Kröger, P.2    Zimek, A.3
  • 6
    • 79959359175 scopus 로고    scopus 로고
    • A novel attribute weighting algorithm for clustering high-dimensional categorical data
    • L. Bai, J.Y. Liang, C.Y. Dang, and F.Y. Cao A novel attribute weighting algorithm for clustering high-dimensional categorical data Pattern Recognition 44 12 2011 2843 2861
    • (2011) Pattern Recognition , vol.44 , Issue.12 , pp. 2843-2861
    • Bai, L.1    Liang, J.Y.2    Dang, C.Y.3    Cao, F.Y.4
  • 7
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data survey
    • T.W. Liao Clustering of time series data survey Pattern Recognition 38 11 2005 1857 1874
    • (2005) Pattern Recognition , vol.38 , Issue.11 , pp. 1857-1874
    • Liao, T.W.1
  • 12
    • 34447330447 scopus 로고    scopus 로고
    • A k-mean clustering algorithm for mixed numeric and categorical data
    • DOI 10.1016/j.datak.2007.03.016, PII S0169023X0700050X
    • A. Ahmad, and L. Dey A k-mean clustering algorithm for mixed numeric and categorical data Data & Knowledge Engineering 63 2 2007 503 527 (Pubitemid 47053940)
    • (2007) Data and Knowledge Engineering , vol.63 , Issue.2 , pp. 503-527
    • Ahmad, A.1    Dey, L.2
  • 13
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Z.X. Huang Extensions to the k-means algorithm for clustering large data sets with categorical values Data Mining and Knowledge Discovery 2 3 1998 283 304
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.X.1
  • 20
    • 34447501949 scopus 로고    scopus 로고
    • Hierarchical clustering of mixed data based on distance hierarchy
    • C.C. Hsu, C.L. Chen, and Y.W. Su Hierarchical clustering of mixed data based on distance hierarchy Information Sciences 177 20 2007 4474 4492
    • (2007) Information Sciences , vol.177 , Issue.20 , pp. 4474-4492
    • Hsu, C.C.1    Chen, C.L.2    Su, Y.W.3
  • 22
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: Hierarchical clustering using dynamic modeling
    • G. Karypis, E. Han, and V. Kumar Chameleon: hierarchical clustering using dynamic modeling IEEE Computer 32 8 1999 68 75
    • (1999) IEEE Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.2    Kumar, V.3
  • 24
    • 0034228041 scopus 로고    scopus 로고
    • ROCK: A robust clustering algorithm for categorical attributes
    • S. Guha, R. Rastogi, and K. Shim ROCK: a robust clustering algorithm for categorical attributes Information Systems 25 5 2000 345 366
    • (2000) Information Systems , vol.25 , Issue.5 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 26
    • 4544367326 scopus 로고    scopus 로고
    • FCM-based model selection algorithms for determining the number of clusters
    • H.J. Sun, S.R. Wang, and Q.S. Jiang FCM-based model selection algorithms for determining the number of clusters Pattern Recognition 37 10 2004 2027 2037
    • (2004) Pattern Recognition , vol.37 , Issue.10 , pp. 2027-2037
    • Sun, H.J.1    Wang, S.R.2    Jiang, Q.S.3
  • 27
    • 0033117357 scopus 로고    scopus 로고
    • On finding the number of clusters
    • DOI 10.1016/S0167-8655(99)00008-2, PII S0167865599000082
    • R. Kothari, and D. Pitts On finding the number of clusters Pattern Recognition Letters 20 4 1999 405 416 (Pubitemid 29377623)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.4 , pp. 405-416
    • Kothari, R.1    Pitts, D.2
  • 30
    • 0036604864 scopus 로고    scopus 로고
    • Genetic clustering for automatic evolution of clusters and application to image classification
    • DOI 10.1016/S0031-3203(01)00108-X, PII S003132030100108X
    • S. Bandyopadhyay, and U. Maulik Genetic clustering for automatic evolution of clusters and application to image classification Pattern Recognition 35 6 2002 1197 1208 (Pubitemid 34262330)
    • (2002) Pattern Recognition , vol.35 , Issue.6 , pp. 1197-1208
    • Bandyopadhyay, S.1    Maulik, U.2
  • 31
    • 53149106965 scopus 로고    scopus 로고
    • A point symmetry-based clustering technique for automatic evolution of clusters
    • S. Bandyopadhyay, and S. Saha A point symmetry-based clustering technique for automatic evolution of clusters IEEE Transactions on Knowledge and Data Engineering 20 11 2008 1441 1457
    • (2008) IEEE Transactions on Knowledge and Data Engineering , vol.20 , Issue.11 , pp. 1441-1457
    • Bandyopadhyay, S.1    Saha, S.2
  • 32
    • 84857054977 scopus 로고    scopus 로고
    • Genetic algorithms for clustering and fuzzy clustering
    • S. Bandyopadhyay Genetic algorithms for clustering and fuzzy clustering WIREs Data Mining and Knowledge Discovery 1 6 2011 524 531
    • (2011) WIREs Data Mining and Knowledge Discovery , vol.1 , Issue.6 , pp. 524-531
    • Bandyopadhyay, S.1
  • 33
    • 0242679438 scopus 로고    scopus 로고
    • Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach
    • DOI 10.1198/016214503000000666
    • C.A. Sugar, and G.M. James Finding the number of clusters in a data set: an information theoretic approach Journal of the American Statistical Association 98 463 2003 750 763 (Pubitemid 37395947)
    • (2003) Journal of the American Statistical Association , vol.98 , Issue.463 , pp. 750-763
    • Sugar, C.A.1    James, G.M.2
  • 35
    • 79957516063 scopus 로고    scopus 로고
    • An initialization method to simultaneously find initial cluster centers and the number of clusters for clustering categorical data
    • L. Bai, J.Y. Liang, and C.Y. Dang An initialization method to simultaneously find initial cluster centers and the number of clusters for clustering categorical data Knowledge-Based Systems 24 6 2011 785 795
    • (2011) Knowledge-Based Systems , vol.24 , Issue.6 , pp. 785-795
    • Bai, L.1    Liang, J.Y.2    Dang, C.Y.3
  • 37
    • 56249108354 scopus 로고    scopus 로고
    • Determining the best k for clustering transactional datasets: A coverage density-based approach
    • H. Yan, K.K. Chen, L. Liu, and J. Bae Determining the best k for clustering transactional datasets: a coverage density-based approach Data & Knowledge Engineering 68 1 2009 28 48
    • (2009) Data & Knowledge Engineering , vol.68 , Issue.1 , pp. 28-48
    • Yan, H.1    Chen, K.K.2    Liu, L.3    Bae, J.4
  • 39
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • C.E. Shannon A mathematical theory of communication Bell Systems Technical Journal 27 3-4 1948 379 423
    • (1948) Bell Systems Technical Journal , vol.27 , Issue.34 , pp. 379-423
    • Shannon, C.E.1
  • 41
    • 27144543595 scopus 로고    scopus 로고
    • An optimization model for outlier detection in categorical data
    • Z.Y. He, S.C. Deng, and X.F. Xu An optimization model for outlier detection in categorical data Lecture Notes in Computer Science vol. 3644 2005 400 409
    • (2005) Lecture Notes in Computer Science , vol.3644 , pp. 400-409
    • He, Z.Y.1    Deng, S.C.2    Xu, X.F.3
  • 42
    • 0032205549 scopus 로고    scopus 로고
    • Uncertainty measures of rough set prediction
    • PII S0004370298000915
    • I. Düntsch, and G. Gediga Uncertainty measures of rough set prediction Artificial Intelligence 106 1 1998 109 137 (Pubitemid 128402352)
    • (1998) Artificial Intelligence , vol.106 , Issue.1 , pp. 109-137
    • Duntsch, I.1    Gediga, G.2
  • 44
    • 0001473437 scopus 로고
    • On the estimation of a probability density function and the mode
    • E. Parzen On the estimation of a probability density function and the mode Annals of Mathematical Statistics 33 3 1962 1065 1076
    • (1962) Annals of Mathematical Statistics , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 47
    • 1842674114 scopus 로고    scopus 로고
    • A new method for measuring uncertainty and fuzziness in rough set theory
    • DOI 10.1080/0308107021000013635
    • J.Y. Liang, K.S. Chin, C.Y. Dang, and C.M. Yam Richard A new method for measuring uncertainly and fuzziness in rough set theory International Journal of General Systems 31 4 2002 331 342 (Pubitemid 41623247)
    • (2002) International Journal of General Systems , vol.31 , Issue.4 , pp. 331-342
    • Liang, J.1    Chin, K.S.2    Dang, C.3    Yam, R.C.M.4
  • 48
    • 77951118185 scopus 로고    scopus 로고
    • Positive approximation: An accelerator for attribute reduction in rough set theory
    • Y.H. Qian, J.Y. Liang, W. Pedrycz, and C.Y. Dang Positive approximation: an accelerator for attribute reduction in rough set theory Artificial Intelligence 174 910 2010 597 618
    • (2010) Artificial Intelligence , vol.174 , Issue.910 , pp. 597-618
    • Qian, Y.H.1    Liang, J.Y.2    Pedrycz, W.3    Dang, C.Y.4
  • 49
    • 34948842036 scopus 로고    scopus 로고
    • Measures for evaluating the decision performance of a decision table in rough set theory
    • Y.H. Qian, J.Y. Liang, D.Y. Li, H.Y. Zhang, and C. Y Dang Measures for evaluating the decision performance of a decision table in rough set theory Information Sciences 178 1 2008 181 202
    • (2008) Information Sciences , vol.178 , Issue.1 , pp. 181-202
    • Qian, Y.H.1    Liang, J.Y.2    Li, D.Y.3    Zhang, H.Y.4    Dang C, Y.5
  • 51
    • 33750915055 scopus 로고    scopus 로고
    • Information entropy, rough entropy and knowledge granulation in incomplete information systems
    • DOI 10.1080/03081070600687668, PII M5112667U8065687
    • J.Y. Liang, Z.Z. Shi, D.Y. Li, and M.J. Wierman The information entropy, rough entropy and knowledge granulation in incomplete information system International Journal of General Systems 35 6 2006 641 654 (Pubitemid 44728618)
    • (2006) International Journal of General Systems , vol.35 , Issue.6 , pp. 641-654
    • Liang, J.1    Shi, Z.2    Li, D.3    Wierman, M.J.4
  • 52
    • 39949085751 scopus 로고    scopus 로고
    • A density-based cluster validity approach using multi-representatives
    • M. Halkidi, and M. Vazirgiannis A density-based cluster validity approach using multi-representatives Pattern Recognition Letters 29 6 2008 773 786
    • (2008) Pattern Recognition Letters , vol.29 , Issue.6 , pp. 773-786
    • Halkidi, M.1    Vazirgiannis, M.2
  • 54
    • 34547434740 scopus 로고    scopus 로고
    • On fuzzy cluster validity indices
    • W.N. Wang, and Y.J. Zhang On fuzzy cluster validity indices Fuzzy Sets and Systems 158 19 2007 2095 2117
    • (2007) Fuzzy Sets and Systems , vol.158 , Issue.19 , pp. 2095-2117
    • Wang, W.N.1    Zhang, Y.J.2
  • 56
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • D.H. Fisher Knowledge acquisition via incremental conceptual clustering Machine Learning 2 2 1987 139 172
    • (1987) Machine Learning , vol.2 , Issue.2 , pp. 139-172
    • Fisher, D.H.1
  • 58
    • 0042763812 scopus 로고    scopus 로고
    • Reinterpreting the Category Utility Function
    • DOI 10.1023/A:1010924920739
    • B. Mirkin Reinterpreting the category utility function Machine Learning 45 2 2001 219 228 (Pubitemid 33635986)
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 219-228
    • Mirkin, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.