메뉴 건너뛰기




Volumn 20, Issue 11, 2008, Pages 1519-1534

Agglomerative fuzzy K-Means clustering algorithm with selection of number of clusters

Author keywords

Agglomerative; Cluster validation; Fuzzy K Means clustering; Number of clusters

Indexed keywords

ALGORITHMS; CHLORINE COMPOUNDS; CLUSTER ANALYSIS; FLOW OF SOLIDS; FUZZY CLUSTERING; SET THEORY; STANDARDS; TWO DIMENSIONAL; WATER SUPPLY SYSTEMS; WINE;

EID: 52949101047     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2008.88     Document Type: Article
Times cited : (247)

References (39)
  • 3
    • 0014060964 scopus 로고
    • A Clustering Technique for Summarizing Multivariate Data
    • G.H. Ball and D.J. Hall, "A Clustering Technique for Summarizing Multivariate Data," Behavioral Science, vol. 12, pp. 153-155, 1967.
    • (1967) Behavioral Science , vol.12 , pp. 153-155
    • Ball, G.H.1    Hall, D.J.2
  • 4
    • 0014534297 scopus 로고
    • A New Approach to Clustering
    • E.R. Ruspini, "A New Approach to Clustering," Information Control, vol. 19, pp. 22-32, 1969.
    • (1969) Information Control , vol.19 , pp. 22-32
    • Ruspini, E.R.1
  • 5
    • 0001457509 scopus 로고
    • Some Methods for Classification and Analysis of Multivariate Observations
    • AD 669871, pp
    • J.B. MacQueen, "Some Methods for Classification and Analysis of Multivariate Observations," Proc. Fifth Symp. Math. Statistics and Probability, vol. 1, AD 669871, pp. 281-297, 1967.
    • (1967) Proc. Fifth Symp. Math. Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 8
    • 0029245943 scopus 로고
    • Fuzzy and Possibilistic Shell Clustering Algorithms and Their Application to Boundary Detection and Surface Approximation - Part I and II
    • R. Krishnapuram, H. Frigui, and O. Nasraoui, "Fuzzy and Possibilistic Shell Clustering Algorithms and Their Application to Boundary Detection and Surface Approximation - Part I and II," IEEE. Trans. Fuzzy Systems, vol. 3, no. 4, pp. 29-60, 1995.
    • (1995) IEEE. Trans. Fuzzy Systems , vol.3 , Issue.4 , pp. 29-60
    • Krishnapuram, R.1    Frigui, H.2    Nasraoui, O.3
  • 9
    • 0031268101 scopus 로고    scopus 로고
    • Fuzzy Shell Clustering Algorithms in Image Processing: Fuzzy c-Rectangular and 2-Rectangular Shells
    • F. Hoppner, "Fuzzy Shell Clustering Algorithms in Image Processing: Fuzzy c-Rectangular and 2-Rectangular Shells," IEEE. Trans. Fuzzy Systems, vol. 5, no. 4, pp. 599-613, 1997.
    • (1997) IEEE. Trans. Fuzzy Systems , vol.5 , Issue.4 , pp. 599-613
    • Hoppner, F.1
  • 12
    • 38049103082 scopus 로고
    • A Near-optimal Initial Seed Value Selection for K-Means Algorithm Using Genetic Algorithm
    • G.P. Babu and M.N. Murty, "A Near-optimal Initial Seed Value Selection for K-Means Algorithm Using Genetic Algorithm," Pattern Recognition Letters, vol. 14, pp. 763-769, 1993.
    • (1993) Pattern Recognition Letters , vol.14 , pp. 763-769
    • Babu, G.P.1    Murty, M.N.2
  • 14
    • 33144460268 scopus 로고    scopus 로고
    • A Genetic Algorithm Using Hyper-Quadtrees for Low-Dimensional K-Means Clustering
    • Apr
    • M. Laszlo and S. Mukherjee, "A Genetic Algorithm Using Hyper-Quadtrees for Low-Dimensional K-Means Clustering," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 533-543, Apr. 2006.
    • (2006) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.28 , Issue.4 , pp. 533-543
    • Laszlo, M.1    Mukherjee, S.2
  • 15
    • 35148867445 scopus 로고    scopus 로고
    • A Genetic Algorithm That Exchanges Neighboring Centers for K-Means Clustering
    • M. Laszlo and S. Mukherjee, "A Genetic Algorithm That Exchanges Neighboring Centers for K-Means Clustering," Pattern Recognition Letters, vol. 28, no. 16, pp. 2359-2366, 2007.
    • (2007) Pattern Recognition Letters , vol.28 , Issue.16 , pp. 2359-2366
    • Laszlo, M.1    Mukherjee, S.2
  • 17
    • 34250115918 scopus 로고
    • An Examination of Procedures for Determining the Number of Clusters in a Data Set
    • G.W. Mulligan and M.C. Cooper, "An Examination of Procedures for Determining the Number of Clusters in a Data Set," Psychometrika, vol. 50, pp. 159-179, 1985.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Mulligan, G.W.1    Cooper, M.C.2
  • 18
    • 0029360028 scopus 로고
    • On Cluster Validity for the Fuzzy c-Means Model
    • R. Nikhil and C. James, "On Cluster Validity for the Fuzzy c-Means Model," IEEE Trans. Fuzzy Systems, vol. 3, no. 3, pp. 370-379, 1995.
    • (1995) IEEE Trans. Fuzzy Systems , vol.3 , Issue.3 , pp. 370-379
    • Nikhil, R.1    James, C.2
  • 20
    • 4544367326 scopus 로고    scopus 로고
    • FCM-Based Model Selection Algorithms for Determining the Number of Clusters
    • H. Sun, S. Wang, and Q. Jiang, "FCM-Based Model Selection Algorithms for Determining the Number of Clusters," Pattern Recognition, vol. 37, pp. 2027-2037, 2004.
    • (2004) Pattern Recognition , vol.37 , pp. 2027-2037
    • Sun, H.1    Wang, S.2    Jiang, Q.3
  • 21
  • 22
    • 0016355478 scopus 로고
    • A New Look at the Statistical Model Identification
    • H. Akaike, "A New Look at the Statistical Model Identification, " IEEE Trans. Automatic Control, vol. 19, no. 6, pp. 716-722, 1974.
    • (1974) IEEE Trans. Automatic Control , vol.19 , Issue.6 , pp. 716-722
    • Akaike, H.1
  • 23
    • 0000120766 scopus 로고
    • Estimating the Dimension of a Model
    • G. Schwarz, "Estimating the Dimension of a Model," Annals of Statistics, vol. 6, pp. 461-464, 1978.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 24
    • 21144475085 scopus 로고
    • Consistent Estimation of a Mixing Distribution
    • B.G. Leroux, "Consistent Estimation of a Mixing Distribution," Annals of Statistics, vol. 20, pp. 1350-1360, 1992.
    • (1992) Annals of Statistics , vol.20 , pp. 1350-1360
    • Leroux, B.G.1
  • 25
    • 0033268835 scopus 로고    scopus 로고
    • Booststrapping Likelihood for Model Selection with Small Samples
    • W. Pan, "Booststrapping Likelihood for Model Selection with Small Samples," J. Computational and Graphical Statistics, vol. 8, pp. 225-235, 1999.
    • (1999) J. Computational and Graphical Statistics , vol.8 , pp. 225-235
    • Pan, W.1
  • 26
    • 0001942153 scopus 로고    scopus 로고
    • Model Selection for Probabilistic Clustering Using Cross-Validated Likelihood
    • S. Padhraic, "Model Selection for Probabilistic Clustering Using Cross-Validated Likelihood," Statistics and Computing, vol. 10, pp. 63-72, 2000.
    • (2000) Statistics and Computing , vol.10 , pp. 63-72
    • Padhraic, S.1
  • 27
    • 84950442225 scopus 로고
    • Information Ratios for Validating Mixture Analyses
    • M. Windham and A. Cutler, "Information Ratios for Validating Mixture Analyses," Statistical Assoc., vol. 87, pp. 1188-1192, 1992.
    • (1992) Statistical Assoc , vol.87 , pp. 1188-1192
    • Windham, M.1    Cutler, A.2
  • 28
    • 0002356276 scopus 로고
    • Choosing the Number of Component Clusters in the Mixture-Model Using a New Informational Complexity Criterion of the Inverse-Fisher Information Matrix
    • H. Bozdogan, "Choosing the Number of Component Clusters in the Mixture-Model Using a New Informational Complexity Criterion of the Inverse-Fisher Information Matrix," Information and Classification, pp. 40-54, 1993.
    • (1993) Information and Classification , pp. 40-54
    • Bozdogan, H.1
  • 30
    • 20844432428 scopus 로고    scopus 로고
    • Maximum Weighted Likelihood via Rival Penalized EM for Density Mixture Clustering with Automatic Model Selection
    • June
    • Y. Cheung, "Maximum Weighted Likelihood via Rival Penalized EM for Density Mixture Clustering with Automatic Model Selection," IEEE Trans. Knowledge and Data Eng., vol. 17, no. 6, pp. 750-761, June 2005.
    • (2005) IEEE Trans. Knowledge and Data Eng , vol.17 , Issue.6 , pp. 750-761
    • Cheung, Y.1
  • 31
    • 0031270958 scopus 로고    scopus 로고
    • Rival Penalized Competitive Learning, Finite Mixture, and Multisets Clustering
    • L. Xu, "Rival Penalized Competitive Learning, Finite Mixture, and Multisets Clustering," Pattern Recognition Letters, vol. 18, nos. 11-13, pp. 1167-1178, 1997.
    • (1997) Pattern Recognition Letters , vol.18 , Issue.11-13 , pp. 1167-1178
    • Xu, L.1
  • 32
    • 0029754540 scopus 로고    scopus 로고
    • How Many Clusters?: A Ying-Yang Machine Based Theory for a Classical Open Problem in Pattern Recognition
    • 96, 3, pp
    • L. Xu, "How Many Clusters?: A Ying-Yang Machine Based Theory for a Classical Open Problem in Pattern Recognition," Proc. IEEE Int'l Conf. Neural Networks (ICNN '96), vol. 3, pp. 1546-1551, 1996.
    • (1996) Proc. IEEE Int'l Conf. Neural Networks (ICNN , pp. 1546-1551
    • Xu, L.1
  • 33
    • 0036565310 scopus 로고    scopus 로고
    • Cluster Number Selection for a Small Set of Samples Using the Bayesian Ying-Yang Model
    • P. Guo, C.L. Chen, and M.R. Lyu, "Cluster Number Selection for a Small Set of Samples Using the Bayesian Ying-Yang Model," IEEE Trans. Neural Networks, vol. 13, no. 3, pp. 757-763, 2002.
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.3 , pp. 757-763
    • Guo, P.1    Chen, C.L.2    Lyu, M.R.3
  • 34
    • 0031192257 scopus 로고    scopus 로고
    • Clustering by Competitive Agglomeration
    • H. Frigui and R. Krishnapuram, "Clustering by Competitive Agglomeration," Pattern Recognition, vol. 30, no. 7, pp. 1109-1119, 1997.
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1109-1119
    • Frigui, H.1    Krishnapuram, R.2
  • 36
    • 84950632109 scopus 로고
    • Objective Criteria for the Evaluation of Clustering Methods
    • W. Rand, "Objective Criteria for the Evaluation of Clustering Methods," J. Am. Statistical Assoc., vol. 66, pp. 846-850, 1971.
    • (1971) J. Am. Statistical Assoc , vol.66 , pp. 846-850
    • Rand, W.1
  • 38
    • 84862444046 scopus 로고    scopus 로고
    • K-Harmonic Means - A Data Clustering Algorithm,
    • Technical Report HPL-1999-124, Hewlett-Packard Labs
    • B. Zhang, M. Hsu, and U. Dayal, "K-Harmonic Means - A Data Clustering Algorithm," Technical Report HPL-1999-124, Hewlett-Packard Labs, 1999.
    • (1999)
    • Zhang, B.1    Hsu, M.2    Dayal, U.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.