-
2
-
-
0343442766
-
Knowledge acquisition via incremental conceptual clustering
-
D.H. Fisher Knowledge acquisition via incremental conceptual clustering Machine Learning 2 2 1987 139 172
-
(1987)
Machine Learning
, vol.2
, Issue.2
, pp. 139-172
-
-
Fisher, D.H.1
-
3
-
-
0032652570
-
ROCK: A robust clustering algorithm for categorical attributes
-
Sydney, Australia
-
S. Guha, R. Rastogi, S. Kyuseok, ROCK: a robust clustering algorithm for categorical attributes, in: Proceedings of the 15th International Conference on Data Engineering, Sydney, Australia, vols. 2326, 1999, pp. 512521.
-
(1999)
Proceedings of the 15th International Conference on Data Engineering
, vol.23-26
, pp. 512-521
-
-
Guha, S.1
Rastogi, R.2
Kyuseok, S.3
-
7
-
-
27144536001
-
Extensions to the k-means algorithm for clustering large data sets with categorical values
-
Z.X. Huang Extensions to the k-means algorithm for clustering large data sets with categorical values Data Mining and Knowledge Discovery 2 3 1998 283 304
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.3
, pp. 283-304
-
-
Huang, Z.X.1
-
8
-
-
67649969214
-
Best K: Critical clustering structures in categorical datasets
-
K.K. Chen, and L. Liu Best K: critical clustering structures in categorical datasets Knowledge and Information Systems 20 1 2008 1 33
-
(2008)
Knowledge and Information Systems
, vol.20
, Issue.1
, pp. 1-33
-
-
Chen, K.K.1
Liu, L.2
-
9
-
-
67349143085
-
A new initialization method for categorical data clustering
-
F.Y. Cao, J.Y. Liang, and L. Bai A new initialization method for categorical data clustering Expert Systems with Applications 33 7 2009 10223 10228
-
(2009)
Expert Systems with Applications
, vol.33
, Issue.7
, pp. 10223-10228
-
-
Cao, F.Y.1
Liang, J.Y.2
Bai, L.3
-
10
-
-
77957770084
-
A framework for clustering categorical time-evolving data
-
F.Y. Cao, J.Y. Liang, and L. Bai A framework for clustering categorical time-evolving data IEEE Transactions on Fuzzy Systems 18 5 2010 872 882
-
(2010)
IEEE Transactions on Fuzzy Systems
, vol.18
, Issue.5
, pp. 872-882
-
-
Cao, F.Y.1
Liang, J.Y.2
Bai, L.3
-
12
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan Automatic subspace clustering of high dimensional data for data mining applications Proceedings of the ACM SIGMOD International Conference on Management of Data 1998 94 105 (Pubitemid 128655960)
-
(1998)
SIGMOD Record
, vol.27
, Issue.2
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
14
-
-
0042341570
-
Clustering and its validation in a symbolic framework
-
DOI 10.1016/S0167-8655(03)00066-7
-
K. Mali, and S. Mitra Clustering and its validation in a symbolic framework Pattern Recognition Letters 24 2003 2367 2376 (Pubitemid 36911080)
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.14
, pp. 2367-2376
-
-
Mali, K.1
Mitra, S.2
-
16
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
PII S0004370297000635
-
A. Blum, and P. Langley Selection of relevant features and examples in machine learning Artificial Intelligence 97 1997 245 271 (Pubitemid 127401106)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
18
-
-
77951118185
-
Positive approximation: An accelerator for attribute reduction in rough set theory
-
Y.H. Qian, J.Y. Liang, W. Pedrycz, and C.Y. Dang Positive approximation: an accelerator for attribute reduction in rough set theory Artificial Intelligence 174 56 2010 597 618
-
(2010)
Artificial Intelligence
, vol.174
, Issue.56
, pp. 597-618
-
-
Qian, Y.H.1
Liang, J.Y.2
Pedrycz, W.3
Dang, C.Y.4
-
19
-
-
34547699509
-
Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation
-
Q.H. Hu, Z.X. Xie, and D.R. Yu Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation Pattern Recognition 40 2007 3509 3521
-
(2007)
Pattern Recognition
, vol.40
, pp. 3509-3521
-
-
Hu, Q.H.1
Xie, Z.X.2
Yu, D.R.3
-
24
-
-
0242387333
-
Mafia: Efficient and scalable subspace clustering for very large data sets
-
S. Goil, H. Nagesh, A. Choudhary, Mafia: efficient and scalable subspace clustering for very large data sets, Technical Report CPDC-TR-9906-010, Northwest University, 1999.
-
(1999)
Technical Report CPDC-TR-9906-010, Northwest University
-
-
Goil, S.1
Nagesh, H.2
Choudhary, A.3
-
25
-
-
0347718066
-
Fast Algorithms for Projected Clustering
-
C. Aggarwal, C. Procopiuc, J.L. Wolf, P.S. Yu, and J.S. Park Fast algorithms for projected clustering Proceedings of the ACM SIGMOD International Conference on Management of Data 1999 61 72 (Pubitemid 129597324)
-
(1999)
SIGMOD Record (ACM Special Interest Group on Management of Data)
, vol.28
, Issue.2
, pp. 61-72
-
-
Aggarwal, C.C.1
Wolf, J.L.2
Yu, P.S.3
Procopiuc, C.4
Park, J.S.5
-
32
-
-
26844445118
-
Subspace clustering for high dimensional categorical data
-
G. Gan, and J. Wu Subspace clustering for high dimensional categorical data ACM SIGKDD Explorations Newsletters 6 2 2004 87 94
-
(2004)
ACM SIGKDD Explorations Newsletters
, vol.6
, Issue.2
, pp. 87-94
-
-
Gan, G.1
Wu, J.2
-
33
-
-
33845981111
-
Clicks: An effective algorithm for mining subspace clusters in categorical datasets
-
DOI 10.1016/j.datak.2006.01.005, PII S0169023X06000176
-
M. Zaki, M. Peters, I. Assent, and T. Seidl CLICK: an effective algorithm for mining subspace clusters in categorical datasets Data and Knowledge Engineering 60 2007 51 70 (Pubitemid 46053589)
-
(2007)
Data and Knowledge Engineering
, vol.60
, Issue.1
, pp. 51-70
-
-
Zaki, M.J.1
Peters, M.2
Assent, I.3
Seidl, T.4
-
34
-
-
35648929355
-
Top-down parameter-free clustering of high-dimensional categorical data
-
DOI 10.1109/TKDE.2007.190649
-
E. Cesario, G. Manco, and R. Ortale Top-down parameter-free clustering of high-dimensional categorical data IEEE Transactions on Knowledge and Data Engineering 19 12 2007 1607 1624 (Pubitemid 350025496)
-
(2007)
IEEE Transactions on Knowledge and Data Engineering
, vol.19
, Issue.12
, pp. 1607-1624
-
-
Cesario, E.1
Manco, G.2
Ortale, R.3
-
35
-
-
33947177850
-
Optimal variable weighting for ultrametric and additive tree clustering
-
G. De Soete Optimal variable weighting for ultrametric and additive tree clustering Quality and Quantity 20 1986 169 180
-
(1986)
Quality and Quantity
, vol.20
, pp. 169-180
-
-
De Soete, G.1
-
36
-
-
0035619721
-
Optimal variable weighting for ultrametric and additive trees and K-means partitioning: Methods and software
-
V. Makarenkov, and P. Legendre Optimal variable weighting for ultrametric and additive trees and k-mean spartitioning: methods and software Journal of Classification 18 2001 245 271 (Pubitemid 33587487)
-
(2001)
Journal of Classification
, vol.18
, Issue.2
, pp. 245-271
-
-
Makarenkov, V.1
Legendre, P.2
-
37
-
-
18144419389
-
Automated variable weighting in k-means type clustering
-
DOI 10.1109/TPAMI.2005.95
-
Z.X. Huang, M.K. Ng, H. Rong, and Z. Li Automated variable weighting in k-means type clustering IEEE Transactions on Pattern Analysis and Machine Intelligence 27 5 2005 657 668 (Pubitemid 40608400)
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.5
, pp. 657-668
-
-
Huang, J.Z.1
Ng, M.K.2
Rong, H.3
Li, Z.4
-
38
-
-
1842762839
-
An optimization algorithm for clustering using weighted dissimilarity measures
-
DOI 10.1016/j.patcog.2003.11.003, PII S0031320303004035
-
Y. Chan, W. Ching, M.K. Ng, and Z.X. Huang An optimization algorithm for clustering using weighted dissimilarity measures Pattern Recognition 37 5 2004 943 952 (Pubitemid 38473837)
-
(2004)
Pattern Recognition
, vol.37
, Issue.5
, pp. 943-952
-
-
Chan, E.Y.1
Ching, W.K.2
Ng, M.K.3
Huang, J.Z.4
-
39
-
-
0346847567
-
Unsupervised learning of prototypes and attribute weights
-
DOI 10.1016/j.patcog.2003.08.002
-
H. Frigui, and O. Nasraoui Unsupervised learning of prototypes and attribute weights Pattern Recognition 37 3 2004 567 581 (Pubitemid 38003094)
-
(2004)
Pattern Recognition
, vol.37
, Issue.3
, pp. 567-581
-
-
Frigui, H.1
Nasraoui, O.2
-
42
-
-
34347228671
-
An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
-
DOI 10.1109/TKDE.2007.1048
-
L.P. Jing, M.K. Ng, and Z.X. Huang An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data IEEE Transactions on Knowledge and Data Engineering 19 8 2007 1026 1041 (Pubitemid 47000341)
-
(2007)
IEEE Transactions on Knowledge and Data Engineering
, vol.19
, Issue.8
, pp. 1026-1041
-
-
Jing, L.1
Ng, M.K.2
Huang, J.Z.3
-
43
-
-
33749402881
-
A fuzzy subspace algorithm for clustering high dimensional data
-
G.J. Gan, J.H. Wu, and Z.J. Yang A fuzzy subspace algorithm for clustering high dimensional data X. Li, O. Zaiane, Z. Li, Lecture Notes in Artificial Intelligence vol. 4093 2006 Springer Berlin 271 278
-
(2006)
Lecture Notes in Artificial Intelligence
, vol.4093
, pp. 271-278
-
-
Gan, G.J.1
Wu, J.H.2
Yang, Z.J.3
-
44
-
-
38949102340
-
A convergence theorem for the fuzzy subspace clustering (FSC) algorithm
-
G.J. Gan, and J.H. Wu A convergence theorem for the fuzzy subspace clustering (FSC) algorithm Pattern Recognition 41 2008 1939 1947
-
(2008)
Pattern Recognition
, vol.41
, pp. 1939-1947
-
-
Gan, G.J.1
Wu, J.H.2
-
45
-
-
33847338032
-
Locally adaptive metrics for clustering high dimensional data
-
DOI 10.1007/s10618-006-0060-8
-
C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-Razgan, and D. Papadopoulos Locally adaptive metrics for clustering high dimensional data Data Mining and Knowledge Discovery 14 2007 63 97 (Pubitemid 46345356)
-
(2007)
Data Mining and Knowledge Discovery
, vol.14
, Issue.1
, pp. 63-97
-
-
Domeniconi, C.1
Gunopulos, D.2
Ma, S.3
Yan, B.4
Al-Razgan, M.5
Papadopoulos, D.6
-
48
-
-
4043067108
-
Counterexamples to convergence theorem of maximum-entropy clustering algorithm
-
J. Yu, H. Shi, and H. Huang Counterexamples to convergence theorem of maximum-entropy clustering algorithm Science in China, Series F: Information Sciences 46 2003 321 326
-
(2003)
Science in China, Series F: Information Sciences
, vol.46
, pp. 321-326
-
-
Yu, J.1
Shi, H.2
Huang, H.3
-
49
-
-
77953059755
-
A proof of the convergence theorem of maximum-entropy clustering algorithm
-
S.J. Ren, and Y.D. Wang A proof of the convergence theorem of maximum-entropy clustering algorithm Science in China, Series F: Information Sciences 53 2010 1151 1158
-
(2010)
Science in China, Series F: Information Sciences
, vol.53
, pp. 1151-1158
-
-
Ren, S.J.1
Wang, Y.D.2
-
50
-
-
70449699648
-
Enhanced soft subspace clustering integrating within-cluster and between-cluster information
-
ShitongWang F.L
-
Z.H. Deng, K.S. Choi, F.L. Chung ShitongWang Enhanced soft subspace clustering integrating within-cluster and between-cluster information Pattern Recognition 43 2010 767 781
-
(2010)
Pattern Recognition
, vol.43
, pp. 767-781
-
-
Deng, Z.H.1
Choi, K.S.2
Chung3
-
53
-
-
56949107327
-
A new measure of uncertainty based on knowledge granulation for rough sets
-
J.Y. Liang, J.H. Wang, and Y.H. Qian A new measure of uncertainty based on knowledge granulation for rough sets Information Sciences 179 4 2009 458 470
-
(2009)
Information Sciences
, vol.179
, Issue.4
, pp. 458-470
-
-
Liang, J.Y.1
Wang, J.H.2
Qian, Y.H.3
-
54
-
-
0025902445
-
Symbolic clustering using a new dissimilarity measure
-
DOI 10.1016/0031-3203(91)90022-W
-
K.C. Gowda, and E. Diday Symbolic clustering using a new dissimilarity measure Pattern Recognition 24 6 1991 567 578 (Pubitemid 21650079)
-
(1991)
Pattern Recognition
, vol.24
, Issue.6
, pp. 567-578
-
-
Chidananda Gowda, K.1
Diday, E.2
-
55
-
-
79959369491
-
-
UCI Machine Learning Repository
-
UCI Machine Learning Repository 〈 http://www.ics.uci.edu∼/ mlearn/MLRepository.html 〉, 2010.
-
-
-
-
56
-
-
0031270377
-
A comparative study of clustering methods
-
PII S0167739X97000186
-
M. Zait, and H. Messatfa A comparative study of clustering methods Future Generation Computer Systems 13 1997 149 159 (Pubitemid 127403229)
-
(1997)
Future Generation Computer Systems
, vol.13
, Issue.2-3
, pp. 149-159
-
-
Zait, M.1
Messatfa, H.2
-
59
-
-
27144441097
-
An evaluation of statistical approaches to text categorization
-
Y.M. Yang An evaluation of statistical approaches to text categorization Journal of Information Retrieval 1 12 1999 67 88
-
(1999)
Journal of Information Retrieval
, vol.1
, Issue.12
, pp. 67-88
-
-
Yang, Y.M.1
|