메뉴 건너뛰기




Volumn 44, Issue 12, 2011, Pages 2843-2861

A novel attribute weighting algorithm for clustering high-dimensional categorical data

Author keywords

Attribute weighting; Cluster analysis; High dimensional categorical data; Optimization algorithm; Subspace clustering

Indexed keywords

ATTRIBUTE WEIGHTING; CATEGORICAL DATA; DATA SPARSENESS; EXPERIMENTAL STUDIES; HIGH DIMENSIONAL DATA; HIGH-DIMENSIONAL; K-MODES; LARGE DATASETS; LINEAR TIME COMPLEXITY; NUMBER OF DATUM; OPTIMIZATION ALGORITHM; OPTIMIZATION ALGORITHMS; OPTIMIZATION FRAMEWORK; SUBSPACE CLUSTERING; SYNTHETIC AND REAL DATA; WEIGHT VALUES; WEIGHTING TECHNIQUES;

EID: 79959359175     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.04.024     Document Type: Article
Times cited : (95)

References (59)
  • 2
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • D.H. Fisher Knowledge acquisition via incremental conceptual clustering Machine Learning 2 2 1987 139 172
    • (1987) Machine Learning , vol.2 , Issue.2 , pp. 139-172
    • Fisher, D.H.1
  • 7
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Z.X. Huang Extensions to the k-means algorithm for clustering large data sets with categorical values Data Mining and Knowledge Discovery 2 3 1998 283 304
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.X.1
  • 8
    • 67649969214 scopus 로고    scopus 로고
    • Best K: Critical clustering structures in categorical datasets
    • K.K. Chen, and L. Liu Best K: critical clustering structures in categorical datasets Knowledge and Information Systems 20 1 2008 1 33
    • (2008) Knowledge and Information Systems , vol.20 , Issue.1 , pp. 1-33
    • Chen, K.K.1    Liu, L.2
  • 9
    • 67349143085 scopus 로고    scopus 로고
    • A new initialization method for categorical data clustering
    • F.Y. Cao, J.Y. Liang, and L. Bai A new initialization method for categorical data clustering Expert Systems with Applications 33 7 2009 10223 10228
    • (2009) Expert Systems with Applications , vol.33 , Issue.7 , pp. 10223-10228
    • Cao, F.Y.1    Liang, J.Y.2    Bai, L.3
  • 10
    • 77957770084 scopus 로고    scopus 로고
    • A framework for clustering categorical time-evolving data
    • F.Y. Cao, J.Y. Liang, and L. Bai A framework for clustering categorical time-evolving data IEEE Transactions on Fuzzy Systems 18 5 2010 872 882
    • (2010) IEEE Transactions on Fuzzy Systems , vol.18 , Issue.5 , pp. 872-882
    • Cao, F.Y.1    Liang, J.Y.2    Bai, L.3
  • 12
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan Automatic subspace clustering of high dimensional data for data mining applications Proceedings of the ACM SIGMOD International Conference on Management of Data 1998 94 105 (Pubitemid 128655960)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 13
  • 14
    • 0042341570 scopus 로고    scopus 로고
    • Clustering and its validation in a symbolic framework
    • DOI 10.1016/S0167-8655(03)00066-7
    • K. Mali, and S. Mitra Clustering and its validation in a symbolic framework Pattern Recognition Letters 24 2003 2367 2376 (Pubitemid 36911080)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.14 , pp. 2367-2376
    • Mali, K.1    Mitra, S.2
  • 16
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • PII S0004370297000635
    • A. Blum, and P. Langley Selection of relevant features and examples in machine learning Artificial Intelligence 97 1997 245 271 (Pubitemid 127401106)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 18
    • 77951118185 scopus 로고    scopus 로고
    • Positive approximation: An accelerator for attribute reduction in rough set theory
    • Y.H. Qian, J.Y. Liang, W. Pedrycz, and C.Y. Dang Positive approximation: an accelerator for attribute reduction in rough set theory Artificial Intelligence 174 56 2010 597 618
    • (2010) Artificial Intelligence , vol.174 , Issue.56 , pp. 597-618
    • Qian, Y.H.1    Liang, J.Y.2    Pedrycz, W.3    Dang, C.Y.4
  • 19
    • 34547699509 scopus 로고    scopus 로고
    • Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation
    • Q.H. Hu, Z.X. Xie, and D.R. Yu Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation Pattern Recognition 40 2007 3509 3521
    • (2007) Pattern Recognition , vol.40 , pp. 3509-3521
    • Hu, Q.H.1    Xie, Z.X.2    Yu, D.R.3
  • 32
    • 26844445118 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional categorical data
    • G. Gan, and J. Wu Subspace clustering for high dimensional categorical data ACM SIGKDD Explorations Newsletters 6 2 2004 87 94
    • (2004) ACM SIGKDD Explorations Newsletters , vol.6 , Issue.2 , pp. 87-94
    • Gan, G.1    Wu, J.2
  • 33
    • 33845981111 scopus 로고    scopus 로고
    • Clicks: An effective algorithm for mining subspace clusters in categorical datasets
    • DOI 10.1016/j.datak.2006.01.005, PII S0169023X06000176
    • M. Zaki, M. Peters, I. Assent, and T. Seidl CLICK: an effective algorithm for mining subspace clusters in categorical datasets Data and Knowledge Engineering 60 2007 51 70 (Pubitemid 46053589)
    • (2007) Data and Knowledge Engineering , vol.60 , Issue.1 , pp. 51-70
    • Zaki, M.J.1    Peters, M.2    Assent, I.3    Seidl, T.4
  • 34
    • 35648929355 scopus 로고    scopus 로고
    • Top-down parameter-free clustering of high-dimensional categorical data
    • DOI 10.1109/TKDE.2007.190649
    • E. Cesario, G. Manco, and R. Ortale Top-down parameter-free clustering of high-dimensional categorical data IEEE Transactions on Knowledge and Data Engineering 19 12 2007 1607 1624 (Pubitemid 350025496)
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.12 , pp. 1607-1624
    • Cesario, E.1    Manco, G.2    Ortale, R.3
  • 35
    • 33947177850 scopus 로고
    • Optimal variable weighting for ultrametric and additive tree clustering
    • G. De Soete Optimal variable weighting for ultrametric and additive tree clustering Quality and Quantity 20 1986 169 180
    • (1986) Quality and Quantity , vol.20 , pp. 169-180
    • De Soete, G.1
  • 36
    • 0035619721 scopus 로고    scopus 로고
    • Optimal variable weighting for ultrametric and additive trees and K-means partitioning: Methods and software
    • V. Makarenkov, and P. Legendre Optimal variable weighting for ultrametric and additive trees and k-mean spartitioning: methods and software Journal of Classification 18 2001 245 271 (Pubitemid 33587487)
    • (2001) Journal of Classification , vol.18 , Issue.2 , pp. 245-271
    • Makarenkov, V.1    Legendre, P.2
  • 38
    • 1842762839 scopus 로고    scopus 로고
    • An optimization algorithm for clustering using weighted dissimilarity measures
    • DOI 10.1016/j.patcog.2003.11.003, PII S0031320303004035
    • Y. Chan, W. Ching, M.K. Ng, and Z.X. Huang An optimization algorithm for clustering using weighted dissimilarity measures Pattern Recognition 37 5 2004 943 952 (Pubitemid 38473837)
    • (2004) Pattern Recognition , vol.37 , Issue.5 , pp. 943-952
    • Chan, E.Y.1    Ching, W.K.2    Ng, M.K.3    Huang, J.Z.4
  • 39
    • 0346847567 scopus 로고    scopus 로고
    • Unsupervised learning of prototypes and attribute weights
    • DOI 10.1016/j.patcog.2003.08.002
    • H. Frigui, and O. Nasraoui Unsupervised learning of prototypes and attribute weights Pattern Recognition 37 3 2004 567 581 (Pubitemid 38003094)
    • (2004) Pattern Recognition , vol.37 , Issue.3 , pp. 567-581
    • Frigui, H.1    Nasraoui, O.2
  • 42
    • 34347228671 scopus 로고    scopus 로고
    • An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
    • DOI 10.1109/TKDE.2007.1048
    • L.P. Jing, M.K. Ng, and Z.X. Huang An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data IEEE Transactions on Knowledge and Data Engineering 19 8 2007 1026 1041 (Pubitemid 47000341)
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.8 , pp. 1026-1041
    • Jing, L.1    Ng, M.K.2    Huang, J.Z.3
  • 43
    • 33749402881 scopus 로고    scopus 로고
    • A fuzzy subspace algorithm for clustering high dimensional data
    • G.J. Gan, J.H. Wu, and Z.J. Yang A fuzzy subspace algorithm for clustering high dimensional data X. Li, O. Zaiane, Z. Li, Lecture Notes in Artificial Intelligence vol. 4093 2006 Springer Berlin 271 278
    • (2006) Lecture Notes in Artificial Intelligence , vol.4093 , pp. 271-278
    • Gan, G.J.1    Wu, J.H.2    Yang, Z.J.3
  • 44
    • 38949102340 scopus 로고    scopus 로고
    • A convergence theorem for the fuzzy subspace clustering (FSC) algorithm
    • G.J. Gan, and J.H. Wu A convergence theorem for the fuzzy subspace clustering (FSC) algorithm Pattern Recognition 41 2008 1939 1947
    • (2008) Pattern Recognition , vol.41 , pp. 1939-1947
    • Gan, G.J.1    Wu, J.H.2
  • 48
    • 4043067108 scopus 로고    scopus 로고
    • Counterexamples to convergence theorem of maximum-entropy clustering algorithm
    • J. Yu, H. Shi, and H. Huang Counterexamples to convergence theorem of maximum-entropy clustering algorithm Science in China, Series F: Information Sciences 46 2003 321 326
    • (2003) Science in China, Series F: Information Sciences , vol.46 , pp. 321-326
    • Yu, J.1    Shi, H.2    Huang, H.3
  • 49
    • 77953059755 scopus 로고    scopus 로고
    • A proof of the convergence theorem of maximum-entropy clustering algorithm
    • S.J. Ren, and Y.D. Wang A proof of the convergence theorem of maximum-entropy clustering algorithm Science in China, Series F: Information Sciences 53 2010 1151 1158
    • (2010) Science in China, Series F: Information Sciences , vol.53 , pp. 1151-1158
    • Ren, S.J.1    Wang, Y.D.2
  • 50
    • 70449699648 scopus 로고    scopus 로고
    • Enhanced soft subspace clustering integrating within-cluster and between-cluster information
    • ShitongWang F.L
    • Z.H. Deng, K.S. Choi, F.L. Chung ShitongWang Enhanced soft subspace clustering integrating within-cluster and between-cluster information Pattern Recognition 43 2010 767 781
    • (2010) Pattern Recognition , vol.43 , pp. 767-781
    • Deng, Z.H.1    Choi, K.S.2    Chung3
  • 53
    • 56949107327 scopus 로고    scopus 로고
    • A new measure of uncertainty based on knowledge granulation for rough sets
    • J.Y. Liang, J.H. Wang, and Y.H. Qian A new measure of uncertainty based on knowledge granulation for rough sets Information Sciences 179 4 2009 458 470
    • (2009) Information Sciences , vol.179 , Issue.4 , pp. 458-470
    • Liang, J.Y.1    Wang, J.H.2    Qian, Y.H.3
  • 54
    • 0025902445 scopus 로고
    • Symbolic clustering using a new dissimilarity measure
    • DOI 10.1016/0031-3203(91)90022-W
    • K.C. Gowda, and E. Diday Symbolic clustering using a new dissimilarity measure Pattern Recognition 24 6 1991 567 578 (Pubitemid 21650079)
    • (1991) Pattern Recognition , vol.24 , Issue.6 , pp. 567-578
    • Chidananda Gowda, K.1    Diday, E.2
  • 55
    • 79959369491 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • UCI Machine Learning Repository 〈 http://www.ics.uci.edu∼/ mlearn/MLRepository.html 〉, 2010.
  • 56
    • 0031270377 scopus 로고    scopus 로고
    • A comparative study of clustering methods
    • PII S0167739X97000186
    • M. Zait, and H. Messatfa A comparative study of clustering methods Future Generation Computer Systems 13 1997 149 159 (Pubitemid 127403229)
    • (1997) Future Generation Computer Systems , vol.13 , Issue.2-3 , pp. 149-159
    • Zait, M.1    Messatfa, H.2
  • 59
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • Y.M. Yang An evaluation of statistical approaches to text categorization Journal of Information Retrieval 1 12 1999 67 88
    • (1999) Journal of Information Retrieval , vol.1 , Issue.12 , pp. 67-88
    • Yang, Y.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.