메뉴 건너뛰기




Volumn 388, Issue 1, 2012, Pages 333-343

Generalization performance of least-square regularized regression algorithm with Markov chain samples

Author keywords

Generalization; Learning theory; Least square regularized regression; Markov chain; Uniformly ergodic

Indexed keywords


EID: 84455208139     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2011.11.032     Document Type: Article
Times cited : (13)

References (29)
  • 1
    • 0001300994 scopus 로고
    • Solution of incorrectly for mulated problems and regularization
    • Tikhonov A.N. Solution of incorrectly for mulated problems and regularization. Soviet Math. Dokl. 1963, 4:1035-1038.
    • (1963) Soviet Math. Dokl. , vol.4 , pp. 1035-1038
    • Tikhonov, A.N.1
  • 3
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Evgeniou T., Pontil M., Poggio T. Regularization networks and support vector machines. Adv. Comput. Math. 2000, 13:1-50.
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 4
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory: On the bias-variance problem
    • Cucker F., Smale S. Best choices for regularization parameters in learning theory: On the bias-variance problem. Found. Comput. Math. 2002, 2:413-428.
    • (2002) Found. Comput. Math. , vol.2 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 5
    • 12444265838 scopus 로고    scopus 로고
    • Consistency of support vector machines and other regularized kernel classifiers
    • Steinwart I. Consistency of support vector machines and other regularized kernel classifiers. IEEE Trans. Inform. Theory 2005, 51:128-142.
    • (2005) IEEE Trans. Inform. Theory , vol.51 , pp. 128-142
    • Steinwart, I.1
  • 6
    • 84879394399 scopus 로고    scopus 로고
    • Support vector machine soft margin classifiers: Error analysis
    • Chen D.R., Wu Q., Ying Y.M., Zhou D.X. Support vector machine soft margin classifiers: Error analysis. J. Mach. Learn. Res. 2004, 5:1143-1175.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1143-1175
    • Chen, D.R.1    Wu, Q.2    Ying, Y.M.3    Zhou, D.X.4
  • 7
    • 33744772341 scopus 로고    scopus 로고
    • Learning rates of least-square regularized regression
    • Wu Q., Ying Yiming, Zhou D.X. Learning rates of least-square regularized regression. Found. Comput. Math. 2006, 6:171-192.
    • (2006) Found. Comput. Math. , vol.6 , pp. 171-192
    • Wu, Q.1    Ying, Y.2    Zhou, D.X.3
  • 10
    • 0003161174 scopus 로고
    • Rates of convergence for empirical processes of stationary mixing sequences
    • Yu B. Rates of convergence for empirical processes of stationary mixing sequences. Ann. Probab. 1994, 22:94-116.
    • (1994) Ann. Probab. , vol.22 , pp. 94-116
    • Yu, B.1
  • 11
    • 0000973081 scopus 로고    scopus 로고
    • Minimum complexity regression estimation with weakly dependent observations
    • Modha S., Masry E. Minimum complexity regression estimation with weakly dependent observations. IEEE Trans. Inform. Theory 1996, 42:2133-2145.
    • (1996) IEEE Trans. Inform. Theory , vol.42 , pp. 2133-2145
    • Modha, S.1    Masry, E.2
  • 12
    • 0034336998 scopus 로고    scopus 로고
    • Concentration of measure inequalities for Markov chains and φ-mixing processes
    • Samson P.M. Concentration of measure inequalities for Markov chains and φ-mixing processes. Ann. Probab. 2000, 28:416-461.
    • (2000) Ann. Probab. , vol.28 , pp. 416-461
    • Samson, P.M.1
  • 13
    • 0037079674 scopus 로고    scopus 로고
    • Hoeffding's inequality for uniformly ergodic Markov chains
    • Glynn P.W., Ormoneit D. Hoeffding's inequality for uniformly ergodic Markov chains. Statist. Probab. Lett. 2002, 56:143-146.
    • (2002) Statist. Probab. Lett. , vol.56 , pp. 143-146
    • Glynn, P.W.1    Ormoneit, D.2
  • 14
    • 0037265542 scopus 로고    scopus 로고
    • Extension of the PAC framework to finite and countable Markov chains
    • Gamarnik D. Extension of the PAC framework to finite and countable Markov chains. IEEE Trans. Inform. Theory 2003, 49:338-345.
    • (2003) IEEE Trans. Inform. Theory , vol.49 , pp. 338-345
    • Gamarnik, D.1
  • 15
    • 62549123636 scopus 로고    scopus 로고
    • Learning from uniformly ergodic Markov chain samples
    • Zou B., Zhang H., Xu Z.B. Learning from uniformly ergodic Markov chain samples. J. Complexity 2009, 25:188-200.
    • (2009) J. Complexity , vol.25 , pp. 188-200
    • Zou, B.1    Zhang, H.2    Xu, Z.B.3
  • 16
    • 67649954573 scopus 로고    scopus 로고
    • Online learning with Markov sampling
    • Smale S., Zhou D.X. Online learning with Markov sampling. Anal. Appl. 2009, 7:87-113.
    • (2009) Anal. Appl. , vol.7 , pp. 87-113
    • Smale, S.1    Zhou, D.X.2
  • 17
    • 61849181973 scopus 로고    scopus 로고
    • Concentration inequalities for dependent random variables via the martingale method
    • Kontorovich L., Ramanan K. Concentration inequalities for dependent random variables via the martingale method. Ann. Probab. 2008, 36:2126-2158.
    • (2008) Ann. Probab. , vol.36 , pp. 2126-2158
    • Kontorovich, L.1    Ramanan, K.2
  • 19
    • 67349220691 scopus 로고    scopus 로고
    • The generalization performance of ERM algorithm with strongly mixing observations
    • Zou B., Li L.Q., Xu Z.B. The generalization performance of ERM algorithm with strongly mixing observations. Machine Learning 2009, 75:275-295.
    • (2009) Machine Learning , vol.75 , pp. 275-295
    • Zou, B.1    Li, L.Q.2    Xu, Z.B.3
  • 22
    • 84890736685 scopus 로고    scopus 로고
    • General state space Markov chains and MCMC algorithms
    • Roberts G.O., Rosenthal J.S. General state space Markov chains and MCMC algorithms. Probab. Surv. 2004, 1:20-71.
    • (2004) Probab. Surv. , vol.1 , pp. 20-71
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 23
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • Cucker F., Smale S. On the mathematical foundations of learning. Bull. Amer. Math. Soc. 2001, 39:1-49.
    • (2001) Bull. Amer. Math. Soc. , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 24
    • 0031176507 scopus 로고    scopus 로고
    • Scale-sensitive dimensions, uniform convergence and learnability
    • Alon N., Ben-David S., Cesa-Bianchi N. Scale-sensitive dimensions, uniform convergence and learnability. J. ACM 1997, 44:615-631.
    • (1997) J. ACM , vol.44 , pp. 615-631
    • Alon, N.1    Ben-David, S.2    Cesa-Bianchi, N.3
  • 25
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • Bartlett P.L. The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Trans. Inform. Theory 1998, 44:525-536.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , pp. 525-536
    • Bartlett, P.L.1
  • 26
    • 0036748375 scopus 로고    scopus 로고
    • The covering number in learning theory
    • Zhou D.X. The covering number in learning theory. J. Complexity 2002, 18:739-767.
    • (2002) J. Complexity , vol.18 , pp. 739-767
    • Zhou, D.X.1
  • 27
    • 0038105204 scopus 로고    scopus 로고
    • Capacity of reproducing kernel spaces in learning theory
    • Zhou D.X. Capacity of reproducing kernel spaces in learning theory. IEEE Trans. Inform. Theory 2003, 49:1743-1752.
    • (2003) IEEE Trans. Inform. Theory , vol.49 , pp. 1743-1752
    • Zhou, D.X.1
  • 28
    • 34248201015 scopus 로고    scopus 로고
    • The performance bounds of learning machines based on exponentially strongly mixing sequence
    • Zou B., Li L.Q. The performance bounds of learning machines based on exponentially strongly mixing sequence. Comput. Math. Appl. 2007, 53:1050-1058.
    • (2007) Comput. Math. Appl. , vol.53 , pp. 1050-1058
    • Zou, B.1    Li, L.Q.2
  • 29
    • 84972574511 scopus 로고
    • Weighted sums of certain dependent random variables
    • Azuma K. Weighted sums of certain dependent random variables. Tohoku Math. J. 1967, 19:357-367.
    • (1967) Tohoku Math. J. , vol.19 , pp. 357-367
    • Azuma, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.