-
2
-
-
3142681333
-
New approaches to statistical learning theory
-
Bousquet O. New approaches to statistical learning theory. Ann. Inst. Statist. Math. 55 (2003) 371-389
-
(2003)
Ann. Inst. Statist. Math.
, vol.55
, pp. 371-389
-
-
Bousquet, O.1
-
3
-
-
84879394399
-
Support vector machine soft margin classifiers: Error analysis
-
Chen D.R., Wu Q., Ying Y.M., and Zhou D.X. Support vector machine soft margin classifiers: Error analysis. J. Mach. Learn. Res. 5 (2004) 1143-1175
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1143-1175
-
-
Chen, D.R.1
Wu, Q.2
Ying, Y.M.3
Zhou, D.X.4
-
4
-
-
0036071370
-
On the mathematical foundations of learning
-
Cucker F., and Smale S. On the mathematical foundations of learning. Bull. Amer. Math. Soc. 39 (2002) 1-49
-
(2002)
Bull. Amer. Math. Soc.
, vol.39
, pp. 1-49
-
-
Cucker, F.1
Smale, S.2
-
6
-
-
3042850649
-
Shannon sampling and function reconstruction from point values
-
Smale S., and Zhou D.X. Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. 41 (2004) 279-305
-
(2004)
Bull. Amer. Math. Soc.
, vol.41
, pp. 279-305
-
-
Smale, S.1
Zhou, D.X.2
-
8
-
-
0003161174
-
Rates of convergence for empirical processes of stationary mixing sequences
-
Yu B. Rates of convergence for empirical processes of stationary mixing sequences. Ann. Probab. 22 (1994) 94-114
-
(1994)
Ann. Probab.
, vol.22
, pp. 94-114
-
-
Yu, B.1
-
9
-
-
0000973081
-
Minimum complexity regression estimation with weakly dependent observations
-
Modha S., and Masry E. Minimum complexity regression estimation with weakly dependent observations. IEEE Trans. Inform. Theory 42 (1996) 2133-2145
-
(1996)
IEEE Trans. Inform. Theory
, vol.42
, pp. 2133-2145
-
-
Modha, S.1
Masry, E.2
-
11
-
-
62549145002
-
-
Online learning with Markov sampling, 2008
-
S. Smale, D.X. Zhou, Online learning with Markov sampling, http://www6.cityu.edu.hk/ma/people/dxzhou/SmaleZhou0708.pdf, 2008
-
-
-
Smale, S.1
Zhou, D.X.2
-
12
-
-
34248201015
-
The performance bounds of learning machines based on exponentially strongly mixing sequence
-
Zou B., and Li L.Q. The performance bounds of learning machines based on exponentially strongly mixing sequence. Comput. Math. Appl. 53 7 (2007) 1050-1058
-
(2007)
Comput. Math. Appl.
, vol.53
, Issue.7
, pp. 1050-1058
-
-
Zou, B.1
Li, L.Q.2
-
13
-
-
67349220691
-
-
Bin Zou, Luoqing Li, Zongben Xu, The generalization performance of ERM algorithm with strongly mixing observations, Mach. Learn. (2009), doi:10.1007/s10994-009-5104-z
-
Bin Zou, Luoqing Li, Zongben Xu, The generalization performance of ERM algorithm with strongly mixing observations, Mach. Learn. (2009), doi:10.1007/s10994-009-5104-z
-
-
-
-
15
-
-
0000324169
-
Adaptive rejection sampling for Gibbs sampling
-
Gilks W.R., and Wild P. Adaptive rejection sampling for Gibbs sampling. Appl. Statist. 51 2 (1992) 337-348
-
(1992)
Appl. Statist.
, vol.51
, Issue.2
, pp. 337-348
-
-
Gilks, W.R.1
Wild, P.2
-
17
-
-
77956890234
-
Monte Carlo sampling methods using Markov chain and their applications
-
Hastings W.K. Monte Carlo sampling methods using Markov chain and their applications. Biometrika 57 (1970) 97-109
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
18
-
-
33645087459
-
On the Markov chain central limit theorem
-
Jones G.L. On the Markov chain central limit theorem. Probab. Surveys 1 (2004) 299-320
-
(2004)
Probab. Surveys
, vol.1
, pp. 299-320
-
-
Jones, G.L.1
-
20
-
-
0037079674
-
Hoeffding's inequality for uniformly ergodic Markov chains
-
Glynn P.W., and Ormoneit D. Hoeffding's inequality for uniformly ergodic Markov chains. Statist. Probab. Lett. 56 (2002) 143-146
-
(2002)
Statist. Probab. Lett.
, vol.56
, pp. 143-146
-
-
Glynn, P.W.1
Ormoneit, D.2
-
21
-
-
0038105204
-
Capacity of reproducing kernel spaces in learning theory
-
Zhou D.X. Capacity of reproducing kernel spaces in learning theory. IEEE Trans. Inform. Theory 49 (2003) 1743-1752
-
(2003)
IEEE Trans. Inform. Theory
, vol.49
, pp. 1743-1752
-
-
Zhou, D.X.1
-
22
-
-
0036436325
-
Best choices for regularization parameters in learning theory: On the bias-variance problem
-
Cucker F., and Smale S. Best choices for regularization parameters in learning theory: On the bias-variance problem. Found. Comput. Math. 2 (2002) 413-428
-
(2002)
Found. Comput. Math.
, vol.2
, pp. 413-428
-
-
Cucker, F.1
Smale, S.2
|