메뉴 건너뛰기




Volumn 42, Issue 6 PART 2, 1996, Pages 2133-2145

Minimum complexity regression estimation with weakly dependent observations

Author keywords

Bernstein inequality; Minimum complexity regression estimation; Mixing processes; Neural networks; Rates of convergence

Indexed keywords


EID: 0000973081     PISSN: 00189448     EISSN: None     Source Type: Journal    
DOI: 10.1109/18.556602     Document Type: Article
Times cited : (124)

References (34)
  • 1
    • 21344479405 scopus 로고
    • An introduction to functional central limit theorems for dependent stochastic processes
    • D. W. K. Andrews and D. Pollard, "An introduction to functional central limit theorems for dependent stochastic processes," Int. Statist. Rev., vol. 62, no. 1, pp. 119-132, 1994.
    • (1994) Int. Statist. Rev. , vol.62 , Issue.1 , pp. 119-132
    • Andrews, D.W.K.1    Pollard, D.2
  • 2
    • 0001257554 scopus 로고
    • Central limit theorems for empirical and U-processes of stationary mixing sequences
    • M. A. Arcones and B. Yu, "Central limit theorems for empirical and U-processes of stationary mixing sequences," J. Theor. Probab., vol. 7, no. 1, 1994.
    • (1994) J. Theor. Probab. , vol.7 , Issue.1
    • Arcones, M.A.1    Yu, B.2
  • 4
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • May
    • _, "Universal approximation bounds for superpositions of a sigmoidal function," IEEE Trans. Inform. Theory, vol. 39, no. 3, pp. 930-945, May 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , Issue.3 , pp. 930-945
  • 5
    • 0001325515 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • _, "Approximation and estimation bounds for artificial neural networks," Machine Learning, vol. 14, pp. 115-133, 1994.
    • (1994) Machine Learning , vol.14 , pp. 115-133
  • 6
    • 0026190366 scopus 로고
    • Minimum complexity density estimation
    • July
    • A. R. Barron and T. M. Cover, "Minimum complexity density estimation," IEEE Trans. Inform. Theory, vol. 37, no. 4, pp. 1034-1054, July 1991.
    • (1991) IEEE Trans. Inform. Theory , vol.37 , Issue.4 , pp. 1034-1054
    • Barron, A.R.1    Cover, T.M.2
  • 7
    • 33747361491 scopus 로고
    • Inégalite de Bernstein pour les processus stationnaires et mélangeants. Applications
    • D. Bosq, "Inégalite de Bernstein pour les processus stationnaires et mélangeants. Applications," C. R. Seances de l'Acad. des Sci. Paris, ser. A, vol. 281, pp. 1095-1098, 1975.
    • (1975) C. R. Seances de L'Acad. des Sci. Paris, Ser. A , vol.281 , pp. 1095-1098
    • Bosq, D.1
  • 8
    • 0001261147 scopus 로고
    • Inégalite de Bernstein pour les processus fortement mélangeants, non nécessairement stationnaires. Applications
    • M. Carbon, "Inégalite de Bernstein pour les processus fortement mélangeants, non nécessairement stationnaires. Applications," C. R. Seances de l'Acad. des Sci. Paris, ser. I, vol. 297, pp. 303-306, 1983.
    • (1983) C. R. Seances de L'Acad. des Sci. Paris, Ser. I , vol.297 , pp. 303-306
    • Carbon, M.1
  • 9
    • 0004834602 scopus 로고
    • On the Tchebychef inequality of Bernstein
    • C. C. Craig, "On the Tchebychef inequality of Bernstein," Ann. Math. Statist., vol. 4, pp. 94-102, 1933.
    • (1933) Ann. Math. Statist. , vol.4 , pp. 94-102
    • Craig, C.C.1
  • 10
  • 12
    • 0000461359 scopus 로고
    • Invariance principles for absolutely regular empirical processes
    • P. Doukhan, P. Massart, and E. Rio, "Invariance principles for absolutely regular empirical processes," Ann. Inst. Henri Poincaré, Probab. Statist., vol. 31, no. 2, pp. 393-427, 1995.
    • (1995) Ann. Inst. Henri Poincaré, Probab. Statist. , vol.31 , Issue.2 , pp. 393-427
    • Doukhan, P.1    Massart, P.2    Rio, E.3
  • 13
    • 0027632576 scopus 로고
    • Strong universal consistency of neural network classifiers
    • July
    • A. Farago and G. Lugosi, "Strong universal consistency of neural network classifiers," IEEE Trans. Inform. Theory, vol. 39, no. 4, pp. 1146-1151, July 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , Issue.4 , pp. 1146-1151
    • Farago, A.1    Lugosi, G.2
  • 16
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • W. Hoeffding, "Probability inequalities for sums of bounded random variables," J. Amer. Statist. Assoc., vol. 58, pp. 13-30, 1963.
    • (1963) J. Amer. Statist. Assoc. , vol.58 , pp. 13-30
    • Hoeffding, W.1
  • 17
    • 0001307541 scopus 로고
    • Degree of approximation results for feedforward networks approximating unknown mappings and their derivatives
    • K. Hornik, M. B. Stinchcombe, H. White, and P. Auer, "Degree of approximation results for feedforward networks approximating unknown mappings and their derivatives," Neural Comput., vol. 6, pp. 1262-1275, 1994.
    • (1994) Neural Comput. , vol.6 , pp. 1262-1275
    • Hornik, K.1    Stinchcombe, M.B.2    White, H.3    Auer, P.4
  • 18
    • 0029307575 scopus 로고
    • Nonparametric estimation via empirical risk minimization
    • May
    • G. Lugosi and K. Zeger, "Nonparametric estimation via empirical risk minimization," IEEE Trans. Inform. Theory, vol. 41, no. 3, pp. 677-687, May 1995.
    • (1995) IEEE Trans. Inform. Theory , vol.41 , Issue.3 , pp. 677-687
    • Lugosi, G.1    Zeger, K.2
  • 19
    • 0029754587 scopus 로고    scopus 로고
    • Concept learning using complexity regularization
    • Jan.
    • _, "Concept learning using complexity regularization," IEEE Trans. Inform. Theory, vol. 42, no. 1, pp. 48-54, Jan. 1996.
    • (1996) IEEE Trans. Inform. Theory , vol.42 , Issue.1 , pp. 48-54
  • 20
    • 0002454664 scopus 로고
    • Strong consistency and rates for deconvolution of multivariate densities of stationary processes
    • E. Masry, "Strong consistency and rates for deconvolution of multivariate densities of stationary processes," Stoch. Process. Appl., vol. 47, pp. 53-74, 1993.
    • (1993) Stoch. Process. Appl. , vol.47 , pp. 53-74
    • Masry, E.1
  • 21
    • 0028320833 scopus 로고
    • Convergence rates for single hidden layer feedforward networks
    • D. F. McCaffrey and A. R. Gallant, "Convergence rates for single hidden layer feedforward networks," Neural Networks, vol. 7, no. 1, pp. 147-158, 1994.
    • (1994) Neural Networks , vol.7 , Issue.1 , pp. 147-158
    • McCaffrey, D.F.1    Gallant, A.R.2
  • 25
    • 84986849734 scopus 로고
    • Nonparametric estimators for time series
    • P. M. Robinson, "Nonparametric estimators for time series," J. Time Series Anal., vol. 4, pp. 185-297, 1983.
    • (1983) J. Time Series Anal. , vol.4 , pp. 185-297
    • Robinson, P.M.1
  • 26
    • 0002591194 scopus 로고
    • Nonparametric regression estimation under mixing conditions
    • G. G. Roussas, "Nonparametric regression estimation under mixing conditions," Stoch. Process. Appl., vol. 36, pp. 107-116, 1990.
    • (1990) Stoch. Process. Appl. , vol.36 , pp. 107-116
    • Roussas, G.G.1
  • 27
    • 0002605356 scopus 로고
    • A central limit theorem and strong mixing conditions
    • M. Rosenblatt, "A central limit theorem and strong mixing conditions," Proc. Nat. Acad. Sci., vol. 4, pp. 43-47, 1956.
    • (1956) Proc. Nat. Acad. Sci. , vol.4 , pp. 43-47
    • Rosenblatt, M.1
  • 30
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings
    • H. White, "Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings," Neural Networks, vol. 3, pp. 535-549, 1989.
    • (1989) Neural Networks , vol.3 , pp. 535-549
    • White, H.1
  • 32
    • 0000860406 scopus 로고
    • Conditions for linear processes to be strong-mixing
    • C. S. Withers, "Conditions for linear processes to be strong-mixing," Z. Wahrscheinlichkeitstheorie verw. Gebiete, vol. 57, pp. 477-480, 1981.
    • (1981) Z. Wahrscheinlichkeitstheorie Verw. Gebiete , vol.57 , pp. 477-480
    • Withers, C.S.1
  • 33
    • 0003161174 scopus 로고
    • Rates of convergence for empirical processes of stationary mixing sequences
    • B. Yu, "Rates of convergence for empirical processes of stationary mixing sequences," Ann. Probab., vol. 22, no. 1, pp. 94-116, 1994.
    • (1994) Ann. Probab. , vol.22 , Issue.1 , pp. 94-116
    • Yu, B.1
  • 34
    • 0029341524 scopus 로고
    • Sup-norm approximation bounds for networks through probabilistic methods
    • J. E. Yukich, M. B. Stinchcombe, and H. White, "Sup-norm approximation bounds for networks through probabilistic methods," IEEE Trans. Inform. Theory, vol. 41, no. 4, pp. 1021-1027, 1995.
    • (1995) IEEE Trans. Inform. Theory , vol.41 , Issue.4 , pp. 1021-1027
    • Yukich, J.E.1    Stinchcombe, M.B.2    White, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.