메뉴 건너뛰기




Volumn , Issue , 2011, Pages 979-984

Feature selection using hierarchical feature clustering

Author keywords

classification; feature clustering; feature selection; learning; mutual information

Indexed keywords

CLASS LABELS; CLASSIFICATION PERFORMANCE; DATA SETS; DISCRIMINATIVE FEATURES; FEATURE CLUSTERING; FEATURE SELECTION ALGORITHM; HIERARCHICAL FEATURES; INFORMATION MEASUREMENT; LEARNING; MAIN CHARACTERISTICS; MINIMAL REDUNDANCY; MUTUAL INFORMATIONS; SELECTION METHODS; SELECTION PROCEDURES; SIMULATION EXPERIMENTS; TEXT CATEGORIZATION; TRADITIONAL LEARNING;

EID: 83055191253     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2063576.2063716     Document Type: Conference Paper
Times cited : (54)

References (29)
  • 2
    • 36948999941 scopus 로고    scopus 로고
    • Available from Department of Information and Computer Science, University of California Irvine
    • A Asuncion, DJ Newman, UCI Machine Learning Repository. Available from http://wwwicsuciedu/~mlearn/MLRepositoryhtml, Department of Information and Computer Science, University of California Irvine, 2007.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 3
    • 58249093836 scopus 로고    scopus 로고
    • A feature selection technique for generation of classification committees and its application to categorization of laryngeal images
    • M Bacauskiene, A Verikas, A Gelzinis, D Valincius, A feature selection technique for generation of classification committees and its application to categorization of laryngeal images. Pattern Recognition 42(5): 645-654, 2009.
    • (2009) Pattern Recognition , vol.42 , Issue.5 , pp. 645-654
    • Bacauskiene, M.1    Verikas, A.2    Gelzinis, A.3    Valincius, D.4
  • 4
    • 0028468293 scopus 로고
    • Using Mutual Information for Selecting Features in Supervised Neural Net Learning
    • R Battiti, Using Mutual Information for Selecting Features in Supervised Neural Net Learning. IEEE Transactions on Neural Networks 5(4): 537-550, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 5
    • 0034324043 scopus 로고    scopus 로고
    • A Formalism for Relevance and Its Application in Feature Subset Selection
    • DA Bell, H Wang, A Formalism for Relevance and Its Application in Feature Subset Selection. Machine Learning 41: 175-195, 2000.
    • (2000) Machine Learning , vol.41 , pp. 175-195
    • Bell, D.A.1    Wang, H.2
  • 6
    • 50549092368 scopus 로고    scopus 로고
    • Feature selection mutual information and the classification of high-dimensional patterns
    • B Bonev, F Escolano, M Cazorla, Feature selection mutual information and the classification of high-dimensional patterns. Pattern Analysis and Application 11: 309-319, 2008.
    • (2008) Pattern Analysis and Application , vol.11 , pp. 309-319
    • Bonev, B.1    Escolano, F.2    Cazorla, M.3
  • 10
    • 33645690579 scopus 로고    scopus 로고
    • Fast Binary Feature Selection with Conditional Mutual Information
    • F Fleuret, Fast Binary Feature Selection with Conditional Mutual Information. Journal of Machine Learning Research 5: 1531-1555, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 14
    • 78651559039 scopus 로고    scopus 로고
    • Feature Selection via Correlation Coefficient Clustering
    • HH Hsu, CW Hsieh, Feature Selection via Correlation Coefficient Clustering, Journal of Software 5(12): 1371-1377, 2010.
    • (2010) Journal of Software , vol.5 , Issue.12 , pp. 1371-1377
    • Hsu, H.H.1    Hsieh, C.W.2
  • 16
    • 78650359969 scopus 로고    scopus 로고
    • Estimating redundancy information of selected features in multi-dimensional pattern
    • CS Jung, H Seo, HG Kang, Estimating redundancy information of selected features in multi-dimensional pattern. Pattern Recognition Letters 32: 590-596, 2011.
    • (2011) Pattern Recognition Letters , vol.32 , pp. 590-596
    • Jung, C.S.1    Seo, H.2    Kang, H.G.3
  • 19
    • 74749091012 scopus 로고    scopus 로고
    • Learning to classify by ongoing feature selection
    • D Levi, S Ullman, Learning to classify by ongoing feature selection. Image and Vision Computing 28(4): 715-723, 2010.
    • (2010) Image and Vision Computing , vol.28 , Issue.4 , pp. 715-723
    • Levi, D.1    Ullman, S.2
  • 20
    • 77951255156 scopus 로고    scopus 로고
    • Ensemble gene selection for cancer classification
    • H Liu, L Liu, H Zhang, Ensemble gene selection for cancer classification. Pattern Recognition 43(8): 2763-2772, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.8 , pp. 2763-2772
    • Liu, H.1    Liu, L.2    Zhang, H.3
  • 21
    • 62349118015 scopus 로고    scopus 로고
    • Feature selection with dynamic mutual information
    • H Liu, J Sun, L Liu, H Zhang, Feature selection with dynamic mutual information. Pattern Recognition 42: 1330-1339, 2009.
    • (2009) Pattern Recognition , vol.42 , pp. 1330-1339
    • Liu, H.1    Sun, J.2    Liu, L.3    Zhang, H.4
  • 22
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • DOI 10.1109/TKDE.2005.66
    • H Liu, L Yu, Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17(4): 491-502, 2005. (Pubitemid 40495592)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 24
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • H Peng, F Long, C Ding, Feature Selection Based on Mutual Information: Criteria of Max-Dependency Max-Relevanceand Min-Redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8): 1226-1238, 2005. (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 25
    • 56049119676 scopus 로고    scopus 로고
    • Robust Feature Selection Using Ensemble Feature Selection Techniques
    • Proceedings of ECML/PKDD 2008, Springer
    • Y Saeys, T Abeel, YV de Peer, Robust Feature Selection Using Ensemble Feature Selection Techniques. In: Proceedings of ECML/PKDD 2008, LNAI 5212, Springer, pp 313-325, 2008.
    • (2008) LNAI , vol.5212 , pp. 313-325
    • Saeys, Y.1    Abeel, T.2    De Peer, Y.V.3
  • 26
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Y Saeys, I Inza, L Larrañaga, A review of feature selection techniques in bioinformatics. Bioinformatics 23(19): 2507-2517, 2007. (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 27
    • 76749129275 scopus 로고    scopus 로고
    • Supervised feature selection by clustering using conditional mutual information-based distances
    • JM Sotoca, F Pla, Supervised feature selection by clustering using conditional mutual information-based distances, Pattern Recognition 43: 2068-2081, 2010.
    • (2010) Pattern Recognition , vol.43 , pp. 2068-2081
    • Sotoca, J.M.1    Pla, F.2
  • 29
    • 25144492516 scopus 로고    scopus 로고
    • Efficient Feature Selection via Analysis of Relevance and Redundancy
    • L Yu, H Liu, Efficient Feature Selection via Analysis of Relevance and Redundancy. Journal of Machine Learning Research 5: 1205-1224, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.