메뉴 건너뛰기




Volumn 89, Issue 12, 2011, Pages 2667-2678

Multivariate process monitoring and analysis based on multi-scale KPLS

Author keywords

Fault detection; Kernel partial least square; Multivariate statistical analysis; Wavelet analysis

Indexed keywords

DATA BLOCKS; DATA SETS; DETECTION ABILITY; FAULT CHARACTERISTICS; KERNEL PARTIAL LEAST SQUARE; KERNEL PARTIAL LEAST SQUARES; LOCALIZED FEATURES; MONITORING AND ANALYSIS; MULTISCALES; MULTIVARIATE PROCESS; MULTIVARIATE STATISTICAL ANALYSIS; NONLINEAR PROCESS; PROCESS MEASUREMENTS;

EID: 82855161454     PISSN: 02638762     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cherd.2011.05.005     Document Type: Article
Times cited : (74)

References (36)
  • 1
    • 52949138733 scopus 로고    scopus 로고
    • Multivariate statistical monitoring of continuous wastewater treatment plants
    • Aguado D., Rosen C. Multivariate statistical monitoring of continuous wastewater treatment plants. Engineering Applications of Artificial Intelligence 2008, 21(7):1080-1091.
    • (2008) Engineering Applications of Artificial Intelligence , vol.21 , Issue.7 , pp. 1080-1091
    • Aguado, D.1    Rosen, C.2
  • 2
    • 0037392450 scopus 로고    scopus 로고
    • Multiscale SPC using wavelets: theoretical analysis and properties
    • Aradhye H.B., Bakshi B.R., Strauss R.A., Davis J.F. Multiscale SPC using wavelets: theoretical analysis and properties. AIChE Journal 2003, 49:939-958.
    • (2003) AIChE Journal , vol.49 , pp. 939-958
    • Aradhye, H.B.1    Bakshi, B.R.2    Strauss, R.A.3    Davis, J.F.4
  • 3
    • 13844255758 scopus 로고    scopus 로고
    • Nonlinear wavelet thresholding: a recursive method to determine the optimal denoising threshold
    • Azzalinia A., Fargea m., Schneider K. Nonlinear wavelet thresholding: a recursive method to determine the optimal denoising threshold. Applied and Computational Harmonic Analysis 2005, 18(2):177-185.
    • (2005) Applied and Computational Harmonic Analysis , vol.18 , Issue.2 , pp. 177-185
    • Azzalinia, A.1    Fargea, M.2    Schneider, K.3
  • 4
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • Bakshi B.R. Multiscale PCA with application to multivariate statistical process monitoring. AIChE Journal 1998, 44:1596-1610.
    • (1998) AIChE Journal , vol.44 , pp. 1596-1610
    • Bakshi, B.R.1
  • 5
    • 35248872549 scopus 로고    scopus 로고
    • Correcting data from an unknown accelerometer using recursive least squares and wavelet de-noising
    • Chanerleya A.A., Alexander N.A. Correcting data from an unknown accelerometer using recursive least squares and wavelet de-noising. Computers & Structures 2007, 85(21-22):1679-1692.
    • (2007) Computers & Structures , vol.85 , Issue.21-22 , pp. 1679-1692
    • Chanerleya, A.A.1    Alexander, N.A.2
  • 6
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • Cho J.H., Lee J.M., Choi S.W., Lee D., Lee I.B. Fault identification for process monitoring using kernel principal component analysis. Chemical Engineering Science 2005, 60:279-288.
    • (2005) Chemical Engineering Science , vol.60 , pp. 279-288
    • Cho, J.H.1    Lee, J.M.2    Choi, S.W.3    Lee, D.4    Lee, I.B.5
  • 8
    • 10444237307 scopus 로고    scopus 로고
    • Multiblock PLS-based localized process diagnosis
    • Choi S.W., Lee I.B. Multiblock PLS-based localized process diagnosis. Journal of Process Control 2005, 15(3):295-306.
    • (2005) Journal of Process Control , vol.15 , Issue.3 , pp. 295-306
    • Choi, S.W.1    Lee, I.B.2
  • 10
    • 0043015539 scopus 로고    scopus 로고
    • Non-linear principal component analysis-based on principal curves and neural networks
    • Dong D., McAvoy T.J. Non-linear principal component analysis-based on principal curves and neural networks. Computers and Chemical Engineering 1996, 20:5-78.
    • (1996) Computers and Chemical Engineering , vol.20 , pp. 5-78
    • Dong, D.1    McAvoy, T.J.2
  • 11
    • 79951876692 scopus 로고    scopus 로고
    • Combination of kernel PCA and linear support vector machine for modeling a nonlinear relationship between bioactivity and molecular descriptors
    • Fu G.H., Cao D.S., Xu Q.S., Li H.D., Liang Y.Z. Combination of kernel PCA and linear support vector machine for modeling a nonlinear relationship between bioactivity and molecular descriptors. Journal of Chemometrics 2011, 25(2):92-99.
    • (2011) Journal of Chemometrics , vol.25 , Issue.2 , pp. 92-99
    • Fu, G.H.1    Cao, D.S.2    Xu, Q.S.3    Li, H.D.4    Liang, Y.Z.5
  • 12
    • 79955105626 scopus 로고    scopus 로고
    • Evaluation of multiblock NIR/MIR PLS predictive models to detect adulteration of diesel/biodiesel blends by vegetal oil
    • Gaydou V., Kistera J., Dupuya N. Evaluation of multiblock NIR/MIR PLS predictive models to detect adulteration of diesel/biodiesel blends by vegetal oil. Chemometrics and Intelligent Laboratory Systems 2011, 106(2):190-197.
    • (2011) Chemometrics and Intelligent Laboratory Systems , vol.106 , Issue.2 , pp. 190-197
    • Gaydou, V.1    Kistera, J.2    Dupuya, N.3
  • 13
    • 77955305868 scopus 로고    scopus 로고
    • Nonlinear process monitoring based on linear subspace and Bayesian inference
    • Ge Z.Q., Zhang M.G., Song Z.H. Nonlinear process monitoring based on linear subspace and Bayesian inference. Journal of Process Control 2010, 20(5):676-688.
    • (2010) Journal of Process Control , vol.20 , Issue.5 , pp. 676-688
    • Ge, Z.Q.1    Zhang, M.G.2    Song, Z.H.3
  • 14
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel PCA-based monitoring approach for nonlinear processes
    • Ge Z.Q., Yang C.J., Song Z.H. Improved kernel PCA-based monitoring approach for nonlinear processes. Chemical Engineering Science 2009, 64:2245-2255.
    • (2009) Chemical Engineering Science , vol.64 , pp. 2245-2255
    • Ge, Z.Q.1    Yang, C.J.2    Song, Z.H.3
  • 15
    • 71549134926 scopus 로고    scopus 로고
    • Multiblock partial least squares regression based on wavelet transform for quantitative analysis of near infrared spectra
    • Jing M., Cai W.S., Shao X.G. Multiblock partial least squares regression based on wavelet transform for quantitative analysis of near infrared spectra. Chemometrics and Intelligent Laboratory Systems 2010, 100:22-27.
    • (2010) Chemometrics and Intelligent Laboratory Systems , vol.100 , pp. 22-27
    • Jing, M.1    Cai, W.S.2    Shao, X.G.3
  • 16
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
    • Kano M., Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Computers and Chemical Engineering 2008, 32(1-2):12-24.
    • (2008) Computers and Chemical Engineering , vol.32 , Issue.1-2 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 18
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: the wavelet representation
    • Mallet S.G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 1989, 11(7):674-693.
    • (1989) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.11 , Issue.7 , pp. 674-693
    • Mallet, S.G.1
  • 19
    • 33646182626 scopus 로고    scopus 로고
    • A multi-scale orthogonal nonlinear statistical process monitoring
    • Maulud A., Wang D., Romagnoli J.A. A multi-scale orthogonal nonlinear statistical process monitoring. Process Control 2006, 16:671-683.
    • (2006) Process Control , vol.16 , pp. 671-683
    • Maulud, A.1    Wang, D.2    Romagnoli, J.A.3
  • 20
    • 79952447950 scopus 로고    scopus 로고
    • Analysis of experimental design with multivariate response: a contribution using multiblock techniques
    • Mazerolles G., Boccard J., Hanafic M., Rudazb S. Analysis of experimental design with multivariate response: a contribution using multiblock techniques. Chemometrics and Intelligent Laboratory Systems 2011, 106(1):65-72.
    • (2011) Chemometrics and Intelligent Laboratory Systems , vol.106 , Issue.1 , pp. 65-72
    • Mazerolles, G.1    Boccard, J.2    Hanafic, M.3    Rudazb, S.4
  • 21
    • 0001282938 scopus 로고    scopus 로고
    • On unifying multiblock analysis with application to decentralized process monitoring
    • Qin S.J., Valle S., Piovoso M.J. On unifying multiblock analysis with application to decentralized process monitoring. Journal of Chemometrics 2001, 15:715-742.
    • (2001) Journal of Chemometrics , vol.15 , pp. 715-742
    • Qin, S.J.1    Valle, S.2    Piovoso, M.J.3
  • 22
    • 33744815945 scopus 로고    scopus 로고
    • Multiscale statistical process control with multiresolution data
    • Reis M.S., Saraiva P.M. Multiscale statistical process control with multiresolution data. AIChE Journal 2006, 52:2107-2119.
    • (2006) AIChE Journal , vol.52 , pp. 2107-2119
    • Reis, M.S.1    Saraiva, P.M.2
  • 23
    • 0037624001 scopus 로고    scopus 로고
    • Kernel partial least squares for nonlinear regression and discrimination
    • Rosipal R. Kernel partial least squares for nonlinear regression and discrimination. Neural Network World 2003, 13:291-300.
    • (2003) Neural Network World , vol.13 , pp. 291-300
    • Rosipal, R.1
  • 25
    • 0033653327 scopus 로고    scopus 로고
    • Multiway multiblock component and covariates regression models
    • Smilde A., Westerhuis J., Boque R. Multiway multiblock component and covariates regression models. Journal of Chemometrics 2000, 14:301-331.
    • (2000) Journal of Chemometrics , vol.14 , pp. 301-331
    • Smilde, A.1    Westerhuis, J.2    Boque, R.3
  • 26
  • 27
    • 28844433766 scopus 로고    scopus 로고
    • PLS regression, PLS path modeling and generalized Procrustean analysis: A combined approach for multiblock analysis
    • Tenenhaus M., Vinzi V.E. PLS regression, PLS path modeling and generalized Procrustean analysis: A combined approach for multiblock analysis. Journal of Chemometrics 2005, 19:145-153.
    • (2005) Journal of Chemometrics , vol.19 , pp. 145-153
    • Tenenhaus, M.1    Vinzi, V.E.2
  • 28
    • 0033652903 scopus 로고    scopus 로고
    • Wavelet-PLS regression models for both exploratory data analysis and process monitoring
    • Teppola P., Minkkinen P. Wavelet-PLS regression models for both exploratory data analysis and process monitoring. Journal of Chemometrics 2000, 14:383-399.
    • (2000) Journal of Chemometrics , vol.14 , pp. 383-399
    • Teppola, P.1    Minkkinen, P.2
  • 29
    • 77951299089 scopus 로고    scopus 로고
    • Multivariate statistical process monitoring using an improved independent component analysis
    • Wang L., Shi H.B. Multivariate statistical process monitoring using an improved independent component analysis. Chemical Engineering Research and Design 2010, 88(4):403-414.
    • (2010) Chemical Engineering Research and Design , vol.88 , Issue.4 , pp. 403-414
    • Wang, L.1    Shi, H.B.2
  • 30
    • 0038198780 scopus 로고    scopus 로고
    • Recursive partial least squares algorithms for monitoring complex industrial processes
    • Wang X., Kruger U.K., Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processes. Control Engineering Practice 2003, 11(6):613-632.
    • (2003) Control Engineering Practice , vol.11 , Issue.6 , pp. 613-632
    • Wang, X.1    Kruger, U.K.2    Lennox, B.3
  • 32
    • 77952682127 scopus 로고    scopus 로고
    • Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares
    • Zhang Y.W., Qin S.J., Chai T.Y. Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares. IEEE Transactions on Signal Processing 2010, 36:593-597.
    • (2010) IEEE Transactions on Signal Processing , vol.36 , pp. 593-597
    • Zhang, Y.W.1    Qin, S.J.2    Chai, T.Y.3
  • 33
    • 77955644611 scopus 로고    scopus 로고
    • Combining kernel partial least-squares modeling and iterative learning control for the batch-to-batch optimization of constrained nonlinear processes
    • Zhang Y.W., Fan Y.P., Zhang P.C. Combining kernel partial least-squares modeling and iterative learning control for the batch-to-batch optimization of constrained nonlinear processes. Industrial & Engineering Chemistry Research 2010, 49(16):7470-7477.
    • (2010) Industrial & Engineering Chemistry Research , vol.49 , Issue.16 , pp. 7470-7477
    • Zhang, Y.W.1    Fan, Y.P.2    Zhang, P.C.3
  • 34
    • 78149465043 scopus 로고    scopus 로고
    • Process data modeling using modified kernel partial least squares
    • Zhang Y.W., Teng Y.D. Process data modeling using modified kernel partial least squares. Chemical Engineering Science 2010, 65:6353-6361.
    • (2010) Chemical Engineering Science , vol.65 , pp. 6353-6361
    • Zhang, Y.W.1    Teng, Y.D.2
  • 35
    • 77952682127 scopus 로고    scopus 로고
    • Decentralized fault diagnosis of large-scale processes using multiblock kernel principal component analysis
    • Zhang Y.W., Zhou H., Qin S.J. Decentralized fault diagnosis of large-scale processes using multiblock kernel principal component analysis. Acta Automatica Sinica 2010, 36(4):593-597.
    • (2010) Acta Automatica Sinica , vol.36 , Issue.4 , pp. 593-597
    • Zhang, Y.W.1    Zhou, H.2    Qin, S.J.3
  • 36
    • 70350318936 scopus 로고    scopus 로고
    • Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA)
    • Zhao C.H., Gao F.R., Wang F.L. Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA). Industrial and Engineering Chemistry Research 2009, 48(20):9163-9174.
    • (2009) Industrial and Engineering Chemistry Research , vol.48 , Issue.20 , pp. 9163-9174
    • Zhao, C.H.1    Gao, F.R.2    Wang, F.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.