메뉴 건너뛰기




Volumn 26, Issue 3, 2011, Pages 369-387

Covariance estimation: The GLM and regularization perspectives

Author keywords

Bayesian estimation; Cholesky decomposition; Dependence and correlation; Graphical models; Longitudinal data; Parsimony; Penalized likelihood; Precision matrix; Sparsity; Spectral decomposition; Variance correlation decomposition

Indexed keywords


EID: 82655175460     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/11-STS358     Document Type: Article
Times cited : (184)

References (122)
  • 1
    • 0000531364 scopus 로고
    • Asymptotically efficient estimation of covariance matrices with linear structure
    • Anderson, T. W. (1973). Asymptotically efficient estimation of covariance matrices with linear structure. Ann. Statist. 1 135-141.
    • (1973) Ann. Statist. , vol.1 , pp. 135-141
    • Anderson, T.W.1
  • 3
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • Banerjee, O., El Ghaoui, L. and D'Aspremont, A. (2008). Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res. 9 485-516.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    D'Aspremont, A.3
  • 4
    • 0034557223 scopus 로고    scopus 로고
    • Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage
    • Barnard, J.,McCulloch, R. Andmeng, X.-L. (2000). Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Statist. Sinica 10 1281-1311.
    • (2000) Statist. Sinica , vol.10 , pp. 1281-1311
    • Barnard, J.1    McCulloch, R.2    Meng, X.-L.3
  • 5
    • 0001416855 scopus 로고
    • On the theory of statistical regression
    • Bartlett, M. S. (1933). On the theory of statistical regression. Proc. Roy. Soc. Edinburgh 53 260-283.
    • (1933) Proc. Roy. Soc. Edinburgh , vol.53 , pp. 260-283
    • Bartlett, M.S.1
  • 6
    • 33745156863 scopus 로고    scopus 로고
    • Some theory of Fisher's linear discriminant function, 'naive Bayes,' and some alternatives when there are many more variables than observations
    • Bickel, P. J. and Levina, E. (2004). Some theory of Fisher's linear discriminant function, 'naive Bayes,' and some alternatives when there are many more variables than observations. Bernoulli 10 989-1010.
    • (2004) Bernoulli , vol.10 , pp. 989-1010
    • Bickel, P.J.1    Levina, E.2
  • 7
    • 41549106844 scopus 로고    scopus 로고
    • Regularized estimation of large covariance matrices
    • Bickel, P. J. and Levina, E. (2008a). Regularized estimation of large covariance matrices. Ann. Statist. 36 199-227.
    • (2008) Ann. Statist. , vol.36 , pp. 199-227
    • Bickel, P.J.1    Levina, E.2
  • 8
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by thresholding
    • Bickel, P. J. and Levina, E. (2008b). Covariance regularization by thresholding. Ann. Statist. 36 2577-2604
    • (2008) Ann. Statist. , vol.36 , pp. 2577-2604
    • Bickel, P.J.1    Levina, E.2
  • 10
    • 3843082641 scopus 로고    scopus 로고
    • Spectral models for covariance matrices
    • Boik, R. J. (2002). Spectral models for covariance matrices. Biometrika 89 159-182.
    • (2002) Biometrika , vol.89 , pp. 159-182
    • Boik, R.J.1
  • 11
    • 78650073483 scopus 로고    scopus 로고
    • Joint variable selection for fixed and random effects in linear mixedeffects models
    • Bondell, H. D., Krishna, A. and Ghosh, S. K. (2010). Joint variable selection for fixed and random effects in linear mixedeffects models. Biometrics 66 1069-1077.
    • (2010) Biometrics , vol.66 , pp. 1069-1077
    • Bondell, H.D.1    Krishna, A.2    Ghosh, S.K.3
  • 13
    • 0001827933 scopus 로고
    • Inference for a covariance matrix
    • (P. R. Freeman and A. F. M. Smith, eds.), Wiley, Chichester
    • Brown, P. J., Le, N. D. and Zidek, J. V. (1994). Inference for a covariance matrix. In Aspects of Uncertainty (P. R. Freeman and A. F. M. Smith, eds.) 77-92. Wiley, Chichester.
    • (1994) Aspects of Uncertainty , pp. 77-92
    • Brown, P.J.1    Le, N.D.2    Zidek, J.V.3
  • 14
    • 77955132618 scopus 로고    scopus 로고
    • Optimal rates of convergence for covariance matrix estimation
    • Cai, T. T., Zhang, C.-H. and Zhou, H. H. (2010). Optimal rates of convergence for covariance matrix estimation. Ann. Statist. 38 2118-2144.
    • (2010) Ann. Statist. , vol.38 , pp. 2118-2144
    • Cai, T.T.1    Zhang, C.-H.2    Zhou, H.H.3
  • 15
    • 0035873793 scopus 로고    scopus 로고
    • What can go wrong when you assume that correlated data are independent: An illustration from the evaluation of a childhood health intervention in Brazil
    • Cannon, M. J., Warner, L., Taddei, J. A. and Kleinbaum, D. G. (2001). What can go wrong when you assume that correlated data are independent: An illustration from the evaluation of a childhood health intervention in Brazil. Statist. Med. 20 1461-1467.
    • (2001) Statist. Med. , vol.20 , pp. 1461-1467
    • Cannon, M.J.1    Warner, L.2    Taddei, J.A.3    Kleinbaum, D.G.4
  • 16
    • 2142803660 scopus 로고    scopus 로고
    • Variances are not always nuisance parameters
    • Carroll, R. J. (2003). Variances are not always nuisance parameters. Biometrics 59 211-220.
    • (2003) Biometrics , vol.59 , pp. 211-220
    • Carroll, R.J.1
  • 18
    • 77955587140 scopus 로고    scopus 로고
    • Estimation of covariance matrix via the sparse Cholesky factor with lasso
    • Chang, C. and Tsay, R. S. (2010). Estimation of covariance matrix via the sparse Cholesky factor with lasso. J. Statist. Plann. Inference 140 3858-3873.
    • (2010) J. Statist. Plann. Inference , vol.140 , pp. 3858-3873
    • Chang, C.1    Tsay, R.S.2
  • 19
    • 0347994096 scopus 로고    scopus 로고
    • Random effects selection in linear mixed models
    • Chen, Z. and Dunson, D. B. (2003). Random effects selection in linear mixed models. Biometrics 59 762-769.
    • (2003) Biometrics , vol.59 , pp. 762-769
    • Chen, Z.1    Dunson, D.B.2
  • 22
    • 5444261980 scopus 로고    scopus 로고
    • A class of shrinkage priors for the dependence structure in longitudinal data
    • Daniels, M. J. (2005). A class of shrinkage priors for the dependence structure in longitudinal data. J. Statist. Plann. Inference 127 119-130.
    • (2005) J. Statist. Plann. Inference , vol.127 , pp. 119-130
    • Daniels, M.J.1
  • 23
    • 85016450800 scopus 로고    scopus 로고
    • Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis
    • Chapman & Hall/CRC, Boca Raton, FL
    • Daniels, M. J. and Hogan, J. W. (2008). Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis. Monographs on Statistics and Applied Probability 109. Chapman & Hall/Crc, Boca Raton, FL.
    • (2008) Monographs on Statistics and Applied Probability , vol.109
    • Daniels, M.J.1    Hogan, J.W.2
  • 24
    • 0442325081 scopus 로고    scopus 로고
    • Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models
    • Daniels, M. J. and Kass, R. E. (1999). Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. J. Amer. Statist. Assoc. 94 1254-1263.
    • (1999) J. Amer. Statist. Assoc. , vol.94 , pp. 1254-1263
    • Daniels, M.J.1    Kass, R.E.2
  • 25
    • 0035185654 scopus 로고    scopus 로고
    • Shrinkage estimators for covariance matrices
    • Daniels, M. J. Andkass, R. E. (2001). Shrinkage estimators for covariance matrices. Biometrics 57 1173-1184.
    • (2001) Biometrics , vol.57 , pp. 1173-1184
    • Daniels, M.J.1    Kass, R.E.2
  • 26
    • 0038600714 scopus 로고    scopus 로고
    • Bayesian analysis of covariance matrices and dynamic models for longitudinal data
    • Daniels, M. J. and Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika 89 553-566.
    • (2002) Biometrika , vol.89 , pp. 553-566
    • Daniels, M.J.1    Pourahmadi, M.2
  • 27
    • 70249117805 scopus 로고    scopus 로고
    • Modeling covariance matrices via partial autocorrelations
    • Daniels, M. J. and Pourahmadi, M. (2009). Modeling covariance matrices via partial autocorrelations. J. Multivariate Anal. 100 2352-2363.
    • (2009) J. Multivariate Anal. , vol.100 , pp. 2352-2363
    • Daniels, M.J.1    Pourahmadi, M.2
  • 28
    • 70249134127 scopus 로고    scopus 로고
    • Partial autocorrelation function of a nonstationary time series
    • DéGerine, S. and Lambert-Lacroix, S. (2003). Partial autocorrelation function of a nonstationary time series J. Multivariate Anal. 89 135-147.
    • (2003) J. Multivariate Anal. , vol.89 , pp. 135-147
    • Dégerine, S.1    Lambert-Lacroix, S.2
  • 29
    • 0001038826 scopus 로고
    • Covariance selection models
    • Dempster, A. (1972). Covariance selection models. Biometrics 28 157-175.
    • (1972) Biometrics , vol.28 , pp. 157-175
    • Dempster, A.1
  • 30
    • 0000752425 scopus 로고
    • Estimation of a covariance matrix under Stein's loss
    • Dey, D. K. and Srinivasan, C. (1985). Estimation of a covariance matrix under Stein's loss. Ann. Statist. 13 1581-1591.
    • (1985) Ann. Statist. , vol.13 , pp. 1581-1591
    • Dey, D.K.1    Srinivasan, C.2
  • 32
    • 44049115751 scopus 로고
    • Priors for ordered conditional variance and vector partial correlation
    • Eaves, D. and Chang, T. (1992). Priors for ordered conditional variance and vector partial correlation. J. Multivariate Anal. 41 43-55.
    • (1992) J. Multivariate Anal. , vol.41 , pp. 43-55
    • Eaves, D.1    Chang, T.2
  • 34
    • 62349123505 scopus 로고    scopus 로고
    • Operator norm consistent estimation of large-dimensional sparse covariance matrices
    • El-Karoui, N. (2008a). Operator norm consistent estimation of large-dimensional sparse covariance matrices. Ann. Statist. 36 2717-2756.
    • (2008) Ann. Statist. , vol.36 , pp. 2717-2756
    • El-Karoui, N.1
  • 35
    • 62349116164 scopus 로고    scopus 로고
    • Spectrum estimation for large dimensional covariance matrices using random matrix theory
    • El-Karoui, N. (2008b). Spectrum estimation for large dimensional covariance matrices using random matrix theory. Ann. Statist. 36 2757-2790.
    • (2008) Ann. Statist. , vol.36 , pp. 2757-2790
    • El-Karoui, N.1
  • 36
    • 73949117731 scopus 로고    scopus 로고
    • Network exploration via the adaptive LASSO and SCAD penalties
    • Fan, J., Feng, Y. and Wu, Y. (2009). Network exploration via the adaptive Lasso and Scad penalties. Ann. Appl. Statist. 3 521-541.
    • (2009) Ann. Appl. Statist. , vol.3 , pp. 521-541
    • Fan, J.1    Feng, Y.2    Wu, Y.3
  • 37
    • 34250768880 scopus 로고    scopus 로고
    • Analysis of longitudinal data with semiparametric estimation of convariance function
    • Fan, J., Huang, T. and Li, R. (2007). Analysis of longitudinal data with semiparametric estimation of convariance function. J. Amer. Statist. Assoc. 102 632-641.
    • (2007) J. Amer. Statist. Assoc. , vol.102 , pp. 632-641
    • Fan, J.1    Huang, T.2    Li, R.3
  • 38
    • 77949352853 scopus 로고    scopus 로고
    • A selective overview of variable selection in high dimensional feature space
    • Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimensional feature space. Statist. Sinica 20 101-148.
    • (2010) Statist. Sinica , vol.20 , pp. 101-148
    • Fan, J.1    Lv, J.2
  • 41
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9 432-441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 43
    • 33750502680 scopus 로고    scopus 로고
    • Estimation of highdimensional prior and posterior covariance matrices in Kalman filter variants
    • Furrer, R. and Bengtsson, T. (2007). Estimation of highdimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivariate Anal. 98 227-255.
    • (2007) J. Multivariate Anal. , vol.98 , pp. 227-255
    • Furrer, R.1    Bengtsson, T.2
  • 44
    • 0000720618 scopus 로고
    • Ante-dependence analysis of an ordered set of variables
    • Gabriel, K. R. (1962). Ante-dependence analysis of an ordered set of variables. Ann. Math. Statist. 33 201-212.
    • (1962) Ann. Math. Statist. , vol.33 , pp. 201-212
    • Gabriel, K.R.1
  • 45
    • 0035649608 scopus 로고    scopus 로고
    • Nonconjugate prior distribution assessment for multivariate normal sampling
    • Garthwaite, P. H. and Al-Awadhi, S. A. (2001). Nonconjugate prior distribution assessment for multivariate normal sampling. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 95-110.
    • (2001) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.63 , pp. 95-110
    • Garthwaite, P.H.1    Al-Awadhi, S.A.2
  • 47
    • 0000406169 scopus 로고
    • Empirical Bayes estimation of the multivariate normal covariance matrix
    • Haff, L. R. (1980). Empirical Bayes estimation of the multivariate normal covariance matrix. Ann. Statist. 8 586-597.
    • (1980) Ann. Statist. , vol.8 , pp. 586-597
    • Haff, L.R.1
  • 48
    • 0001466038 scopus 로고
    • The variational form of certain Bayes estimators
    • Haff, L. R. (1991). The variational form of certain Bayes estimators. Ann. Statist. 19 1163-1190.
    • (1991) Ann. Statist. , vol.19 , pp. 1163-1190
    • Haff, L.R.1
  • 50
    • 70350087511 scopus 로고    scopus 로고
    • A hierarchical eigenmodel for pooled covariance estimation
    • Hoff, P. D. (2009). A hierarchical eigenmodel for pooled covariance estimation. J. Roy. Statist. Soc. Ser. B 71 971-992.
    • (2009) J. Roy. Statist. Soc. Ser. B , vol.71 , pp. 971-992
    • Hoff, P.D.1
  • 52
    • 34147222612 scopus 로고    scopus 로고
    • Estimation of large covariance matrices of longitudinal data with basis function approximations
    • Huang, J. Z., Liu, L. and Liu, N. (2007). Estimation of large covariance matrices of longitudinal data with basis function approximations. J. Comput. Graph. Statist. 16 189-209.
    • (2007) J. Comput. Graph. Statist. , vol.16 , pp. 189-209
    • Huang, J.Z.1    Liu, L.2    Liu, N.3
  • 53
    • 33644986127 scopus 로고    scopus 로고
    • Covariance matrix selection and estimation via penalised normal likelihood
    • Huang, J. Z., Liu, N., Pourahmadi, M. and Liu, L. (2006). Covariance matrix selection and estimation via penalised normal likelihood. Biometrika 93 85-98.
    • (2006) Biometrika , vol.93 , pp. 85-98
    • Huang, J.Z.1    Liu, N.2    Pourahmadi, M.3    Liu, L.4
  • 55
    • 0037577770 scopus 로고    scopus 로고
    • A likelihood ratio test and its modifications for the homogeneity of the covariance matrices of dependent multivariate normals
    • Jiang, G., Sarkar, S. K. and Hsuan, F. (1999). A likelihood ratio test and its modifications for the homogeneity of the covariance matrices of dependent multivariate normals. J. Statist. Plann. Inference 81 95-111.
    • (1999) J. Statist. Plann. Inference , vol.81 , pp. 95-111
    • Jiang, G.1    Sarkar, S.K.2    Hsuan, F.3
  • 56
    • 33749138913 scopus 로고    scopus 로고
    • Generating random correlation matrices based on partial correlations
    • Joe, H. (2006). Generating random correlation matrices based on partial correlations. J. Multivariate Anal. 97 2177-2189.
    • (2006) J. Multivariate Anal. , vol.97 , pp. 2177-2189
    • Joe, H.1
  • 57
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalue in principal components analysis
    • Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295-327.
    • (2001) Ann. Statist. , vol.29 , pp. 295-327
    • Johnstone, I.M.1
  • 58
    • 66549088006 scopus 로고    scopus 로고
    • On consistency and sparsity for principal components analysis in high dimensions
    • Johnstone, I. M. and Lu, A. Y. (2009). On consistency and sparsity for principal components analysis in high dimensions. J. Amer. Statist. Assoc. 104 682-693.
    • (2009) J. Amer. Statist. Assoc. , vol.104 , pp. 682-693
    • Johnstone, I.M.1    Lu, A.Y.2
  • 59
    • 0001353940 scopus 로고
    • Maximum likelihood fitting of ARMA models to time series with missing observations
    • Jones, R. H. (1980). Maximum likelihood fitting of Arma models to time series with missing observations. Technometrics 22 389-395.
    • (1980) Technometrics , vol.22 , pp. 389-395
    • Jones, R.H.1
  • 60
    • 1942512242 scopus 로고
    • Randomly choosing parameters from the stationarity and invertibility region of autoregressive-moving average models
    • Jones, M. C. (1987). Randomly choosing parameters from the stationarity and invertibility region of autoregressive-moving average models. J. Roy. Statist. Soc. Ser. C 36 134-138.
    • (1987) J. Roy. Statist. Soc. Ser. C , vol.36 , pp. 134-138
    • Jones, M.C.1
  • 61
    • 0033484634 scopus 로고    scopus 로고
    • On a relation between principal components and regression analysis
    • Jong, J.-C. and Kotz, S. (1999). On a relation between principal components and regression analysis. Amer. Statist. 53 349-351.
    • (1999) Amer. Statist. , vol.53 , pp. 349-351
    • Jong, J.-C.1    Kotz, S.2
  • 63
    • 70049091991 scopus 로고    scopus 로고
    • Covariance tapering for likelihood-based estimation in large data sets
    • Kaufman, C. G., Schervish, M. J. and Nychka, W. (2008). Covariance tapering for likelihood-based estimation in large data sets. J. Amer. Statist. Assoc. 103 145-155.
    • (2008) J. Amer. Statist. Assoc. , vol.103 , pp. 145-155
    • Kaufman, C.G.1    Schervish, M.J.2    Nychka, W.3
  • 64
    • 0043198278 scopus 로고    scopus 로고
    • A parameterization of positive definite matrices in terms of partial correlation vines
    • Kurowicka, D. and Cooke, R. (2003). A parameterization of positive definite matrices in terms of partial correlation vines. Linear Algebra Appl. 372 225-251.
    • (2003) Linear Algebra Appl. , vol.372 , pp. 225-251
    • Kurowicka, D.1    Cooke, R.2
  • 65
    • 73949122606 scopus 로고    scopus 로고
    • Sparsistency and rates of convergence in large covariance matrix estimation
    • Lam, C. and Fan, J. (2009). Sparsistency and rates of convergence in large covariance matrix estimation. Ann. Statist. 37 4254-4278.
    • (2009) Ann. Statist. , vol.37 , pp. 4254-4278
    • Lam, C.1    Fan, J.2
  • 66
    • 0242558358 scopus 로고    scopus 로고
    • Flexible multivariate GARCH modeling with an application to international stock markets
    • Ledoit, O., Santa-Clara, P. and Wolf, M. (2003). Flexible multivariate Garch modeling with an application to international stock markets. Rev. Econom. Statist. 85 735-747.
    • (2003) Rev. Econom. Statist. , vol.85 , pp. 735-747
    • Ledoit, O.1    Santa-Clara, P.2    Wolf, M.3
  • 67
    • 0346961488 scopus 로고    scopus 로고
    • A well-conditioned estimator for large-dimensional covariance matrices
    • Ledoit, O. Andwolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices. J. Multivariate Anal. 88 365-411.
    • (2004) J. Multivariate Anal. , vol.88 , pp. 365-411
    • Ledoit, O.1    Wolf, M.2
  • 68
    • 77952560131 scopus 로고    scopus 로고
    • Semiparametric meancovariance regression analysis for longitudinal data
    • Leng, C., Zhang, W. and Pan, J. (2010). Semiparametric meancovariance regression analysis for longitudinal data. J. Amer. Statist. Assoc. 105 181-193.
    • (2010) J. Amer. Statist. Assoc. , vol.105 , pp. 181-193
    • Leng, C.1    Zhang, W.2    Pan, J.3
  • 69
    • 21144471428 scopus 로고
    • Bayesian inference for a covariance matrix
    • Leonard, T. and Hsu, J. S. J. (1992). Bayesian inference for a covariance matrix. Ann. Statist. 20 1669-1696.
    • (1992) Ann. Statist. , vol.20 , pp. 1669-1696
    • Leonard, T.1    Hsu, J.S.J.2
  • 70
    • 34547547970 scopus 로고    scopus 로고
    • A matrix exponential spatial specification
    • Lesage, J. P. and Pace, R. K. (2007). A matrix exponential spatial specification. J. Econometrics 140 190-214.
    • (2007) J. Econometrics , vol.140 , pp. 190-214
    • Lesage, J.P.1    Pace, R.K.2
  • 71
    • 0346584128 scopus 로고
    • Estimation of parameter matrices and eigenvalues in MANOVA and canonical correlation analysis
    • Leung, P. L. and Muirhead, R. J. (1987). Estimation of parameter matrices and eigenvalues in Manova and canonical correlation analysis. Ann. Statist. 15 1651-1666.
    • (1987) Ann. Statist. , vol.15 , pp. 1651-1666
    • Leung, P.L.1    Muirhead, R.J.2
  • 72
    • 62349114549 scopus 로고    scopus 로고
    • Sparse estimation of large covariance matrices via a nested Lasso penalty
    • Levina, E., Rothman, A. and Zhu, J. (2008). Sparse estimation of large covariance matrices via a nested Lasso penalty. Ann. Appl. Statist. 2 245-263.
    • (2008) Ann. Appl. Statist. , vol.2 , pp. 245-263
    • Levina, E.1    Rothman, A.2    Zhu, J.3
  • 73
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73 13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 75
    • 78650195184 scopus 로고    scopus 로고
    • A Bayesian inference in joint modelling of location and scale parameters of the t distribution for longitudinal data
    • Lin, T. I. (2011). A Bayesian inference in joint modelling of location and scale parameters of the t distribution for longitudinal data. J. Statist. Plann. Inference 141 1543-1553.
    • (2011) J. Statist. Plann. Inference , vol.141 , pp. 1543-1553
    • Lin, T.I.1
  • 76
    • 0000396393 scopus 로고
    • A Monte Carlo comparison of four estimators of a covariance matrix
    • (Pittsburgh, PA, 1983), North-Holland, Amsterdam
    • Lin, S. P. and Perlman, M. D. (1985). A Monte Carlo comparison of four estimators of a covariance matrix. In Multivariate Analysis Vi (Pittsburgh, Pa, 1983) 411-429. North-Holland, Amsterdam.
    • (1985) Multivariate Analysis VI , pp. 411-429
    • Lin, S.P.1    Perlman, M.D.2
  • 77
    • 67349143113 scopus 로고    scopus 로고
    • A robust approach to joint modeling of mean and scale covariance for longitudinal data
    • Lin, T.-I. and Wang, Y.-J. (2009). A robust approach to joint modeling of mean and scale covariance for longitudinal data. J. Statist. Plann. Inference 139 3013-3026.
    • (2009) J. Statist. Plann. Inference , vol.139 , pp. 3013-3026
    • Lin, T.-I.1    Wang, Y.-J.2
  • 78
    • 38249000691 scopus 로고
    • Bartlett's decomposition of the posterior distribution of the covariance for normal monotone ignorable missing data
    • Liu, C. (1993). Bartlett's decomposition of the posterior distribution of the covariance for normal monotone ignorable missing data. J. Multivariate Anal. 46 198-206..
    • (1993) J. Multivariate Anal. , vol.46 , pp. 198-206
    • Liu, C.1
  • 79
    • 33846159462 scopus 로고    scopus 로고
    • A new algorithm for simulating a correlation matrix based on parameter expansion and reparameterization
    • Liu, X. and Daniels, M. J. (2006). A new algorithm for simulating a correlation matrix based on parameter expansion and reparameterization. J. Comput. Graph. Statist. 15 897-914.
    • (2006) J. Comput. Graph. Statist. , vol.15 , pp. 897-914
    • Liu, X.1    Daniels, M.J.2
  • 80
    • 77958101893 scopus 로고    scopus 로고
    • Banded and tapered estimates for autocovariance matrices and the linear process bootstrap
    • Mcmurry, T. L. and Politis, D. N. (2010). Banded and tapered estimates for autocovariance matrices and the linear process bootstrap. J. Time Series Anal. 31 471-482.
    • (2010) J. Time Series Anal. , vol.31 , pp. 471-482
    • Mcmurry, T.L.1    Politis, D.N.2
  • 81
    • 33747163541 scopus 로고    scopus 로고
    • Highdimensional graphs and variable selection with the lasso
    • Meinshausen, N. and BüHlmann, P. (2006). Highdimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462.
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 82
    • 3843133868 scopus 로고    scopus 로고
    • On modelling meancovariance structures in longitudinal studies
    • Pan, J. and Mackenzie, G. (2003). On modelling meancovariance structures in longitudinal studies. Biometrika 90 239-244.
    • (2003) Biometrika , vol.90 , pp. 239-244
    • Pan, J.1    Mackenzie, G.2
  • 83
    • 66549116888 scopus 로고    scopus 로고
    • Partial correlation estimation by joint sparse regression models
    • Peng, J., Zhou, N. and Zhu, J. (2009). Partial correlation estimation by joint sparse regression models. J. Amer. Statist. Assoc. 104 735-746.
    • (2009) J. Amer. Statist. Assoc. , vol.104 , pp. 735-746
    • Peng, J.1    Zhou, N.2    Zhu, J.3
  • 84
    • 21444460810 scopus 로고    scopus 로고
    • Unconstrained parameterizations for variance-covariance matrices
    • Pinheiro, J. D. and Bates, D. M. (1996). Unconstrained parameterizations for variance-covariance matrices. Stat. Comput. 6 289-366.
    • (1996) Stat. Comput. , vol.6 , pp. 289-366
    • Pinheiro, J.D.1    Bates, D.M.2
  • 85
    • 0012806293 scopus 로고    scopus 로고
    • Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation
    • Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation. Biometrika 86 677-690.
    • (1999) Biometrika , vol.86 , pp. 677-690
    • Pourahmadi, M.1
  • 86
    • 0001304198 scopus 로고    scopus 로고
    • Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix
    • Pourahmadi, M. (2000). Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix. Biometrika 87 425-435.
    • (2000) Biometrika , vol.87 , pp. 425-435
    • Pourahmadi, M.1
  • 88
    • 37549012210 scopus 로고    scopus 로고
    • Cholesky decompositions and estimation of a multivariate normal covariance matrix: Parameter orthogonality
    • Pourahmadi, M. (2007a). Cholesky decompositions and estimation of a multivariate normal covariance matrix: Parameter orthogonality. Biometrika 94 1006-1013.
    • (2007) Biometrika , vol.94 , pp. 1006-1013
    • Pourahmadi, M.1
  • 89
    • 82655167289 scopus 로고    scopus 로고
    • Simultaneous modeling of covariance matrices: GLM, Bayesian and nonparametric perspective
    • (D. Gregori et al., eds.) 41-64. FrancoAngeli, Milan, Italy
    • Pourahmadi, M. (2007b). Simultaneous modeling of covariance matrices: GLM, Bayesian and nonparametric perspective. In Correlated Data Modelling 2004 (D. Gregori et al., eds.) 41-64. Francoangeli, Milan, Italy.
    • (2007) Correlated Data Modelling 2004 , pp. 41-64
    • Pourahmadi, M.1
  • 90
    • 0036192069 scopus 로고    scopus 로고
    • Dynamic conditionally linear mixed models for longitudinal data
    • Pourahmadi, M. and Daniels, M. J. (2002). Dynamic conditionally linear mixed models for longitudinal data. Biometrics 58 225-231.
    • (2002) Biometrics , vol.58 , pp. 225-231
    • Pourahmadi, M.1    Daniels, M.J.2
  • 91
    • 0002718318 scopus 로고
    • Approximate tests of correlation in time-series
    • Quenouille, M. H. (1949). Approximate tests of correlation in time-series. J. Roy. Statist. Soc. Ser. B 11 68-84.
    • (1949) J. Roy. Statist. Soc. Ser. B , vol.11 , pp. 68-84
    • Quenouille, M.H.1
  • 92
    • 62349133125 scopus 로고    scopus 로고
    • Flexible covariance estimation in graphical Gaussian models
    • Rajaratnam, B.,Massam, H. and Carvalho, C. M. (2008). Flexible covariance estimation in graphical Gaussian models. Ann. Statist. 36 2818-2849.
    • (2008) Ann. Statist. , vol.36 , pp. 2818-2849
    • Rajaratnam, B.1    Massam, H.2    Carvalho, C.M.3
  • 93
    • 0007790921 scopus 로고
    • Characterization of the partial autocorrelation function
    • Ramsey, F. L. (1974). Characterization of the partial autocorrelation function. Ann. Statist. 2 1296-1301.
    • (1974) Ann. Statist. , vol.2 , pp. 1296-1301
    • Ramsey, F.L.1
  • 95
    • 70350337963 scopus 로고    scopus 로고
    • Generalized thresholding of large covariance matrices
    • Rothman, A. J., Levina, E. and Zhu, J. (2009). Generalized thresholding of large covariance matrices. J. Amer. Statist. Assoc. 104 177-186.
    • (2009) J. Amer. Statist. Assoc. , vol.104 , pp. 177-186
    • Rothman, A.J.1    Levina, E.2    Zhu, J.3
  • 96
    • 77955901795 scopus 로고    scopus 로고
    • A new approach to Cholesky-based covariance regularization in high dimensions
    • Rothman, A. J., Levina, E. and Zhu, J. (2010). A new approach to Cholesky-based covariance regularization in high dimensions. Biometrika 97 539-550.
    • (2010) Biometrika , vol.97 , pp. 539-550
    • Rothman, A.J.1    Levina, E.2    Zhu, J.3
  • 97
  • 98
    • 0000398846 scopus 로고
    • Step-down procedure in multivariate analysis
    • Roy, J. (1958). Step-down procedure in multivariate analysis. Ann. Math. Statist. 29 1177-1187.
    • (1958) Ann. Math. Statist. , vol.29 , pp. 1177-1187
    • Roy, J.1
  • 100
    • 0036970576 scopus 로고    scopus 로고
    • Parsimonious covariance matrix estimation for longitudinal data
    • Smith, M. and Kohn, R. (2002). Parsimonious covariance matrix estimation for longitudinal data. J. Amer. Statist. Assoc. 97 1141-1153.
    • (2002) J. Amer. Statist. Assoc. , vol.97 , pp. 1141-1153
    • Smith, M.1    Kohn, R.2
  • 101
    • 0000813561 scopus 로고
    • Inadmissibility of the usual estimator for the mean of a multivariate normal distribution
    • Univ. California Press, Berkeley
    • Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proc. Third Berkeley Symp. Math. Statist. Probab. I 197-206. Univ. California Press, Berkeley.
    • (1956) Proc. Third Berkeley Symp. Math. Statist. Probab. , vol.1 , pp. 197-206
    • Stein, C.1
  • 102
    • 27844455709 scopus 로고
    • Estimation of a covariance matrix
    • 39th Annual Meeting IMS. Atlanta, Georgia
    • Stein, C. (1975). Estimation of a covariance matrix. In Rietz Lecture. 39th Annual Meeting Ims. Atlanta, Georgia.
    • (1975) Rietz Lecture
    • Stein, C.1
  • 103
    • 0000975832 scopus 로고
    • Necessary and sufficient conditions for explicit solutions in the multivariate normal estimation problem for patterned means and covariances
    • Szatrowski, T. H. (1980). Necessary and sufficient conditions for explicit solutions in the multivariate normal estimation problem for patterned means and covariances. Ann. Statist. 8 802-810.
    • (1980) Ann. Statist. , vol.8 , pp. 802-810
    • Szatrowski, T.H.1
  • 104
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 105
    • 82655167286 scopus 로고    scopus 로고
    • Discovering sparse covariance structures with the Isomap
    • Wagaman, A. S. and Levina, E. (2009). Discovering sparse covariance structures with the Isomap. J. Comput. Graph. Statist. 18 551-572.
    • (2009) J. Comput. Graph. Statist. , vol.18 , pp. 551-572
    • Wagaman, A.S.1    Levina, E.2
  • 106
    • 42349090022 scopus 로고    scopus 로고
    • Penalized normal likelihood and ridge regularization of correlation and covariance matrices
    • Warton, D. I. (2008). Penalized normal likelihood and ridge regularization of correlation and covariance matrices. J. Amer. Statist. Assoc. 103 340-349.
    • (2008) J. Amer. Statist. Assoc. , vol.103 , pp. 340-349
    • Warton, D.I.1
  • 107
    • 0001602707 scopus 로고
    • Linear recursive equations, covariance selection, and path analysis
    • Wermuth, N. (1980). Linear recursive equations, covariance selection, and path analysis. J. Amer. Statist. Assoc. 75 963-972.
    • (1980) J. Amer. Statist. Assoc. , vol.75 , pp. 963-972
    • Wermuth, N.1
  • 108
    • 66849143711 scopus 로고    scopus 로고
    • Covarianceregularized regression and classification for high-dimensional problems
    • Witten, D. M. and Tibshirani, R. (2009). Covarianceregularized regression and classification for high-dimensional problems. J. Roy. Statist. Soc. Ser. B 71 615-636.
    • (2009) J. Roy. Statist. Soc. Ser. B , vol.71 , pp. 615-636
    • Witten, D.M.1    Tibshirani, R.2
  • 109
    • 0011515521 scopus 로고
    • A generalization of causal chain models
    • Wold, H. O. A. (1960). A generalization of causal chain models. Econometrica 28 443-463.
    • (1960) Econometrica , vol.28 , pp. 443-463
    • Wold, H.O.A.1
  • 110
    • 3843149220 scopus 로고    scopus 로고
    • Efficient estimation of covariance selection models
    • Wong, F., Carter, C. K. and Kohn, R. (2003). Efficient estimation of covariance selection models. Biometrika 90 809-830.
    • (2003) Biometrika , vol.90 , pp. 809-830
    • Wong, F.1    Carter, C.K.2    Kohn, R.3
  • 111
    • 0001445915 scopus 로고
    • The method of path coefficients
    • Wright, S. (1934). The method of path coefficients. Ann. Math. Statist. 5 161-215.
    • (1934) Ann. Math. Statist. , vol.5 , pp. 161-215
    • Wright, S.1
  • 112
    • 3843104546 scopus 로고    scopus 로고
    • Nonparametric estimation of large covariance matrices of longitudinal data
    • Wu, W. B. and Pourahmadi, M. (2003). Nonparametric estimation of large covariance matrices of longitudinal data. Biometrika 90 831-844.
    • (2003) Biometrika , vol.90 , pp. 831-844
    • Wu, W.B.1    Pourahmadi, M.2
  • 113
    • 73249151952 scopus 로고    scopus 로고
    • Banding sample autocovariance matrices of stationary processes
    • Wu, W. B. and Pourahmadi, M. (2009). Banding sample autocovariance matrices of stationary processes. Statist. Sinica 19 1755-1768.
    • (2009) Statist. Sinica , vol.19 , pp. 1755-1768
    • Wu, W.B.1    Pourahmadi, M.2
  • 114
    • 21844496542 scopus 로고
    • Estimation of a covariance matrix using the reference prior
    • Yang, R.-Y. and Berger, J. O. (1994). Estimation of a covariance matrix using the reference prior. Ann. Statist. 22 1195-1211.
    • (1994) Ann. Statist. , vol.22 , pp. 1195-1211
    • Yang, R.-Y.1    Berger, J.O.2
  • 115
    • 62049084054 scopus 로고    scopus 로고
    • Regularized parameter estimation of high dimensional t distribution
    • Yuan, M. and Huang, J. Z. (2009). Regularized parameter estimation of high dimensional t distribution. J. Statist. Plann. Inference 139 2284-2292.
    • (2009) J. Statist. Plann. Inference , vol.139 , pp. 2284-2292
    • Yuan, M.1    Huang, J.Z.2
  • 116
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • Yuan, M. and Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika 94 19-35.
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 117
    • 0142089675 scopus 로고
    • On the theory of correlation for any number of variables, treated by a new system of notation
    • Yule, G. U. (1907). On the theory of correlation for any number of variables, treated by a new system of notation. Roy. Soc. Proc. 79 85-96.
    • (1907) Roy. Soc. Proc. , vol.79 , pp. 85-96
    • Yule, G.U.1
  • 118
    • 0001634204 scopus 로고
    • On a model of investigating periodicities in disturbed series with special reference toWolfer's sunspot numbers
    • Yule, G. U. (1927). On a model of investigating periodicities in disturbed series with special reference Towolfer's sunspot numbers. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 226 267-298.
    • (1927) Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , vol.226 , pp. 267-298
    • Yule, G.U.1
  • 119
    • 0034549561 scopus 로고    scopus 로고
    • Viewing the correlation structure of longitudinal data through a PRISM
    • Zimmerman, D. L. (2000). Viewing the correlation structure of longitudinal data through a Prism. Amer. Statist. 54 310-318.
    • (2000) Amer. Statist. , vol.54 , pp. 310-318
    • Zimmerman, D.L.1
  • 120
    • 0011875126 scopus 로고    scopus 로고
    • Parametric modelling of growth curve data: An overview (with discussion)
    • Zimmerman, D. L. and Núñez-Antón, V. (2001). Parametric modelling of growth curve data: An overview (with discussion). Test 10 1-73.
    • (2001) Test , vol.10 , pp. 1-73
    • Zimmerman, D.L.1    Núñez-Antón, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.