메뉴 건너뛰기




Volumn 71, Issue 3, 2009, Pages 615-636

Covariance-regularized regression and classification for high dimensional problems

Author keywords

Classification; Covariance regularization; N p; Regression; Variable selection

Indexed keywords


EID: 66849143711     PISSN: 13697412     EISSN: 14679868     Source Type: Journal    
DOI: 10.1111/j.1467-9868.2009.00699.x     Document Type: Article
Times cited : (182)

References (35)
  • 1
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • Bair, E. Tibshirani, R. (2004) Semi-supervised methods to predict patient survival from gene expression data. PLOS Biol., 2, 511 522.
    • (2004) PLOS Biol. , vol.2 , pp. 511-522
    • Bair, E.1    Tibshirani, R.2
  • 2
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data
    • Banerjee, O., El Ghaoui, L. E. d'Aspremont, A. (2008) Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. J. Mach. Learn. Res., 9, 485 516.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.E.2    D'Aspremont, A.3
  • 3
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by thresholding
    • to be published.
    • Bickel, P. Levina, E. (2008) Covariance regularization by thresholding. Ann. Statist., to be published.
    • (2008) Ann. Statist.
    • Bickel, P.1    Levina, E.2
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman, L. (2001) Random forests. Mach. Learn., 45, 5 32. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 0000752425 scopus 로고
    • Estimation of a covariance matrix under Stein's loss
    • Dey, D. Srinivasan, C. (1985) Estimation of a covariance matrix under Stein's loss. Ann. Statist., 13, 1581 1591.
    • (1985) Ann. Statist. , vol.13 , pp. 1581-1591
    • Dey, D.1    Srinivasan, C.2
  • 6
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools (with discussion)
    • Frank, I. Friedman, J. (1993) A statistical view of some chemometrics regression tools (with discussion). Technometrics, 35, 109 148.
    • (1993) Technometrics , vol.35 , pp. 109-148
    • Frank, I.1    Friedman, J.2
  • 7
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Friedman, J. (1989) Regularized discriminant analysis. J. Am. Statist. Ass., 84, 165 175.
    • (1989) J. Am. Statist. Ass. , vol.84 , pp. 165-175
    • Friedman, J.1
  • 8
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman, J., Hastie, T. Tibshirani, R. (2007) Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432 441.
    • (2007) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 10
    • 0001648516 scopus 로고
    • Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives
    • Green, P. J. (1984) Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. J. R. Statist. Soc. B, 46, 149 192.
    • (1984) J. R. Statist. Soc. B , vol.46 , pp. 149-192
    • Green, P.J.1
  • 11
    • 33845413755 scopus 로고    scopus 로고
    • Regularized linear discriminant analysis and its application in microarrays
    • DOI 10.1093/biostatistics/kxj035
    • Guo, Y., Hastie, T. Tibshirani, R. (2007) Regularized linear discriminant analysis and its application in microarrays. Biostatistics, 8, 86 100. (Pubitemid 44906104)
    • (2007) Biostatistics , vol.8 , Issue.1 , pp. 86-100
    • Guo, Y.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 0000458393 scopus 로고
    • Estimation of the inverse covariance matrix: Random mixtures of the inverse Wishart matrix and the identity
    • Haff, L. (1979) Estimation of the inverse covariance matrix: random mixtures of the inverse Wishart matrix and the identity. Ann. Statist., 7, 1264 1276.
    • (1979) Ann. Statist. , vol.7 , pp. 1264-1276
    • Haff, L.1
  • 13
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G., Osindero, S. Teh, Y. (2006) A fast learning algorithm for deep belief nets. Neur. Computn, 18, 1527 1553.
    • (2006) Neur. Computn , vol.18 , pp. 1527-1553
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 14
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl, A. E. Kennard, R. (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12, 55 67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.2
  • 18
    • 49449091830 scopus 로고    scopus 로고
    • The use of unlabeled data in predictive modeling
    • Liang, F., Mukherjee, S. West, M. (2007) The use of unlabeled data in predictive modeling. Statist. Sci., 22, 189 205.
    • (2007) Statist. Sci. , vol.22 , pp. 189-205
    • Liang, F.1    Mukherjee, S.2    West, M.3
  • 21
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • Meinshausen, N. Bühlmann, P. (2006) High dimensional graphs and variable selection with the lasso. Ann. Statist., 34, 1436 1462.
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 23
    • 0000734588 scopus 로고
    • Normal discrimination with unclassified observations
    • O'Neill, T. (1978) Normal discrimination with unclassified observations. J. Am. Statist. Ass., 73, 821 826.
    • (1978) J. Am. Statist. Ass. , vol.73 , pp. 821-826
    • O'Neill, T.1
  • 24
    • 34547849507 scopus 로고    scopus 로고
    • 1-regularization path algorithm for generalized linear models
    • 1-regularization path algorithm for generalized linear models. J. R. Statist. Soc. B, 69, 659 677.
    • (2007) J. R. Statist. Soc. B , vol.69 , pp. 659-677
    • Park, M.Y.1    Hastie, T.2
  • 27
    • 62349119614 scopus 로고    scopus 로고
    • Sparse permutation invariant covariance estimation
    • Rothman, A., Levina, E. Zhu, J. (2008) Sparse permutation invariant covariance estimation. Electr. J. Statist., 2, 494 515.
    • (2008) Electr. J. Statist. , vol.2 , pp. 494-515
    • Rothman, A.1    Levina, E.2    Zhu, J.3
  • 29
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267 288.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 31
    • 2342533421 scopus 로고    scopus 로고
    • Class prediction by nearest shrunken centroids, with applications to DNA microarrays
    • DOI 10.1214/ss/1056397488
    • Tibshirani, R., Hastie, T., Narasimhan, B. Chu, G. (2003) Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Statist. Sci., 18, 104 117. (Pubitemid 41461824)
    • (2003) Statistical Science , vol.18 , Issue.1 , pp. 104-117
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 33
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • Zhao, P. Yu, B. (2006) On model selection consistency of lasso. J. Mach. Learn. Res., 7, 2541 2563. (Pubitemid 44866738)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 34
    • 15944363312 scopus 로고    scopus 로고
    • Classification of gene microarrays by penalized logistic regression
    • DOI 10.1093/biostatistics/kxg046
    • Zhu, J. Hastie, T. (2004) Classification of gene microarrays by penalized logistic regression. Biostatistics, 5, 427 443. (Pubitemid 41180217)
    • (2004) Biostatistics , vol.5 , Issue.3 , pp. 427-443
    • Zhu, J.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.